作者
Valerian E Kagan, Gaowei Mao, Feng Qu, Jose Pedro Friedmann Angeli, Sebastian Doll, Claudette St Croix, Haider Hussain Dar, Bing Liu, Vladimir A Tyurin, Vladimir B Ritov, Alexandr A Kapralov, Andrew A Amoscato, Jianfei Jiang, Tamil Anthonymuthu, Dariush Mohammadyani, Qin Yang, Bettina Proneth, Judith Klein-Seetharaman, Simon Watkins, Ivet Bahar, Joel Greenberger, Rama K Mallampalli, Brent R Stockwell, Yulia Y Tyurina, Marcus Conrad, Hülya Bayır
发表日期
2017/1
期刊
Nature chemical biology
卷号
13
期号
1
页码范围
81-90
出版商
Nature Publishing Group US
简介
Enigmatic lipid peroxidation products have been claimed as the proximate executioners of ferroptosis—a specialized death program triggered by insufficiency of glutathione peroxidase 4 (GPX4). Using quantitative redox lipidomics, reverse genetics, bioinformatics and systems biology, we discovered that ferroptosis involves a highly organized oxygenation center, wherein oxidation in endoplasmic-reticulum-associated compartments occurs on only one class of phospholipids (phosphatidylethanolamines (PEs)) and is specific toward two fatty acyls—arachidonoyl (AA) and adrenoyl (AdA). Suppression of AA or AdA esterification into PE by genetic or pharmacological inhibition of acyl-CoA synthase 4 (ACSL4) acts as a specific antiferroptotic rescue pathway. Lipoxygenase (LOX) generates doubly and triply-oxygenated (15-hydroperoxy)-diacylated PE species, which act as death signals, and tocopherols and …
引用总数
201720182019202020212022202320244378131191300405487284
学术搜索中的文章
VE Kagan, G Mao, F Qu, JPF Angeli, S Doll, CS Croix… - Nature chemical biology, 2017