作者
Ethan A Solomon, JE Kragel, R Gross, B Lega, Michael R Sperling, G Worrell, Sameer A Sheth, Kareem A Zaghloul, BC Jobst, JM Stein, S Das, R Gorniak, CS Inman, Sarah Seger, Daniel S Rizzuto, Michael J Kahana
发表日期
2018/10/25
期刊
Nature communications
卷号
9
期号
1
页码范围
4437
出版商
Nature Publishing Group UK
简介
Focal electrical stimulation of the brain incites a cascade of neural activity that propagates from the stimulated region to both nearby and remote areas, offering the potential to control the activity of brain networks. Understanding how exogenous electrical signals perturb such networks in humans is key to its clinical translation. To investigate this, we applied electrical stimulation to subregions of the medial temporal lobe in 26 neurosurgical patients fitted with indwelling electrodes. Networks of low-frequency (5–13 Hz) spectral coherence predicted stimulation-evoked increases in theta (5–8 Hz) power, particularly when stimulation was applied in or adjacent to white matter. Stimulation tended to decrease power in the high-frequency broadband (HFB; 50–200 Hz) range, and these modulations were correlated with HFB-based networks in a subset of subjects. Our results demonstrate that functional connectivity is …
引用总数
20182019202020212022202320241512117145
学术搜索中的文章