作者
Denis Shcherbakov, Alexandra Knörzer, Svenja Espenhahn, Reinhard Hilbig, Ulrich Haas, Martin Blum
发表日期
2013/5/15
期刊
PloS one
卷号
8
期号
5
页码范围
e64429
出版商
Public Library of Science
简介
Near-infrared (NIR) light constitutes an integrated part of solar radiation. The principal ability to sense NIR under laboratory conditions has previously been demonstrated in fish. The availability of NIR in aquatic habitats, and thus its potential use as a cue for distinct behaviors such as orientation and detection of prey, however, depends on physical and environmental parameters. In clear water, blue and green light represents the dominating part of the illumination. In turbid waters, in contrast, the relative content of red and NIR radiation is enhanced, due to increased scattering and absorption of short and middle range wavelengths by suspended particles and dissolved colored materials. We have studied NIR detection thresholds using a phototactic swimming assay in five fish species, which are exposed to different NIR conditions in their natural habitats. Nile and Mozambique tilapia, which inhabit waters with increased turbidity, displayed the highest spectral sensitivity, with thresholds at wavelengths above 930 nm. Zebrafish, guppy and green swordtail, which prefer clearer waters, revealed significantly lower thresholds of spectral sensitivity with 825–845 nm for green swordtail and 845–910 nm for zebrafish and guppy. The present study revealed a clear correlation between NIR sensation thresholds and availability of NIR in the natural habitats, suggesting that NIR vision, as an integral part of the whole spectrum of visual abilities, can serve as an evolutionarily adaptable trait in fish.
引用总数
201420152016201720182019202020212022202320241336113211323
学术搜索中的文章