Creation and analysis of biochemical constraint-based models using the COBRA Toolbox v. 3.0 L Heirendt, S Arreckx, T Pfau, SN Mendoza, A Richelle, A Heinken, ... Nature protocols 14 (3), 639-702, 2019 | 1016 | 2019 |
Characterization of metric regularity of subdifferentials FJ Aragón Artacho, MH Geoffroy Journal of Convex Analysis 15 (2), 365–380, 2008 | 145 | 2008 |
Accelerating the DC algorithm for smooth functions FJ Aragón Artacho, RMT Fleming, PT Vuong Mathematical Programming, 2017 | 92 | 2017 |
Recent Results on Douglas–Rachford Methods for Combinatorial Optimization Problems FJ Aragón Artacho, JM Borwein, MK Tam Journal of Optimization Theory and Applications 163 (1), 1-30, 2013 | 77 | 2013 |
Douglas–Rachford feasibility methods for matrix completion problems FJ Aragón Artacho, JM Borwein, MK Tam The ANZIAM Journal 55 (4), 299-326, 2014 | 74 | 2014 |
Global convergence of a non-convex Douglas-Rachford iteration FJ Aragón Artacho, JM Borwein Journal of Global Optimization 57 (3), 753–769, 2013 | 68 | 2013 |
Metric regularity of Newton's iteration FJ Aragón Artacho, AL Dontchev, M Gaydu, MH Geoffroy, VM Veliov SIAM Journal on Control and Optimization 49 (2), 339-362, 2011 | 63 | 2011 |
The Boosted DC Algorithm for nonsmooth functions FJ Aragón Artacho, PT Vuong arXiv preprint arXiv:1812.06070, 2018 | 56* | 2018 |
Local convergence of quasi-Newton methods under metric regularity FJ Aragón Artacho, A Belyakov, AL Dontchev, M López Computational Optimization and Applications 58 (1), 225-247, 2013 | 52 | 2013 |
Metric subregularity of the convex subdifferential in Banach spaces FJ Aragón Artacho, MH Geoffroy Journal of Nonlinear and Convex Analysis 15 (1), 35-47, 2013 | 52* | 2013 |
Nonlinear optimization FJ Aragón, MA Goberna, MA López, MML Rodríguez Springer International Publishing, 2019 | 50 | 2019 |
Metric regularity and Lipschitzian stability of parametric variational systems FJ Aragón Artacho, BS Mordukhovich Nonlinear Analysis: Theory, Methods & Applications 72 (3), 1149-1170, 2010 | 48 | 2010 |
Convergence of the proximal point method for metrically regular mappings FJ Aragón Artacho, AL Dontchev, MH Geoffroy ESAIM: Proceedings 17, 1-8, 2007 | 48 | 2007 |
The Douglas-Rachford Algorithm for Convex and Nonconvex Feasibility Problems FJ Aragón Artacho, R Campoy, MK Tam arXiv preprint arXiv:1904.09148, 2019 | 46 | 2019 |
Global behavior of the Douglas–Rachford method for a nonconvex feasibility problem FJ Aragón Artacho, JM Borwein, MK Tam Journal of Global Optimization 65 (2), 309-327, 2016 | 43 | 2016 |
Enhanced metric regularity and Lipschitzian properties of variational systems FJ Aragón Artacho, BS Mordukhovich Journal of Global Optimization 50 (1), 145-167, 2011 | 42 | 2011 |
Local convergence of Levenberg-Marquardt methods under Hölder metric subregularity M Ahookhosh, FJ Aragón Artacho, RMT Fleming, PT Vuong arXiv preprint arXiv:1703.07461, 0 | 41* | |
Walking on real numbers FJ Aragón Artacho, DH Bailey, JM Borwein, PB Borwein The Mathematical Intelligencer 35 (1), 42–60, 2013 | 38* | 2013 |
A new projection method for finding the closest point in the intersection of convex sets FJ Aragón Artacho, R Campoy Computational Optimization and Applications 69 (1), 99-132, 2018 | 37 | 2018 |
Solving graph coloring problems with the Douglas-Rachford algorithm FJ Aragón Artacho, R Campoy Set-Valued and Variational Analysis, 2016 | 26 | 2016 |