Robust wide-baseline stereo from maximally stable extremal regions J Matas, O Chum, M Urban, T Pajdla Image and vision computing 22 (10), 761-767, 2004 | 6613 | 2004 |
Object retrieval with large vocabularies and fast spatial matching J Philbin, O Chum, M Isard, J Sivic, A Zisserman 2007 IEEE conference on computer vision and pattern recognition, 1-8, 2007 | 3805 | 2007 |
Lost in quantization: Improving particular object retrieval in large scale image databases J Philbin, O Chum, M Isard, J Sivic, A Zisserman 2008 IEEE conference on computer vision and pattern recognition, 1-8, 2008 | 1890 | 2008 |
Matching with PROSAC-progressive sample consensus O Chum, J Matas 2005 IEEE computer society conference on computer vision and pattern …, 2005 | 1603 | 2005 |
Fine-tuning CNN image retrieval with no human annotation F Radenović, G Tolias, O Chum IEEE transactions on pattern analysis and machine intelligence 41 (7), 1655-1668, 2018 | 1328 | 2018 |
Total recall: Automatic query expansion with a generative feature model for object retrieval O Chum, J Philbin, J Sivic, M Isard, A Zisserman 2007 IEEE 11th International Conference on Computer Vision, 1-8, 2007 | 1103 | 2007 |
Locally optimized RANSAC O Chum, J Matas, J Kittler Pattern Recognition: 25th DAGM Symposium, Magdeburg, Germany, September 10 …, 2003 | 1083 | 2003 |
Label propagation for deep semi-supervised learning A Iscen, G Tolias, Y Avrithis, O Chum Proceedings of the IEEE/CVF conference on computer vision and pattern …, 2019 | 737 | 2019 |
CNN image retrieval learns from BoW: Unsupervised fine-tuning with hard examples F Radenović, G Tolias, O Chum Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The …, 2016 | 716 | 2016 |
USAC: A universal framework for random sample consensus R Raguram, O Chum, M Pollefeys, J Matas, JM Frahm IEEE transactions on pattern analysis and machine intelligence 35 (8), 2022-2038, 2012 | 679 | 2012 |
Near duplicate image detection: Min-hash and TF-IDF weighting. O Chum, J Philbin, A Zisserman Bmvc 810, 812-815, 2008 | 641 | 2008 |
Optimal randomized RANSAC O Chum, J Matas IEEE Transactions on Pattern Analysis and Machine Intelligence 30 (8), 1472-1482, 2008 | 556 | 2008 |
Negative evidences and co-occurences in image retrieval: The benefit of PCA and whitening H Jégou, O Chum Computer Vision–ECCV 2012: 12th European Conference on Computer Vision …, 2012 | 482 | 2012 |
Revisiting oxford and paris: Large-scale image retrieval benchmarking F Radenović, A Iscen, G Tolias, Y Avrithis, O Chum Proceedings of the IEEE conference on computer vision and pattern …, 2018 | 446 | 2018 |
An exemplar model for learning object classes O Chum, A Zisserman 2007 IEEE Conference on Computer Vision and Pattern Recognition, 1-8, 2007 | 384 | 2007 |
Total recall II: Query expansion revisited O Chum, A Mikulik, M Perdoch, J Matas CVPR 2011, 889-896, 2011 | 371 | 2011 |
Efficient representation of local geometry for large scale object retrieval M Perd'och, O Chum, J Matas 2009 IEEE Conference on Computer Vision and Pattern Recognition, 9-16, 2009 | 358 | 2009 |
Geometric min-hashing: Finding a (thick) needle in a haystack O Chum, M Perd'och, J Matas 2009 IEEE Conference on Computer Vision and Pattern Recognition, 17-24, 2009 | 353 | 2009 |
Scalable near identical image and shot detection O Chum, J Philbin, M Isard, A Zisserman Proceedings of the 6th ACM international conference on Image and video …, 2007 | 308 | 2007 |
Fixing the Locally Optimized RANSAC K Lebeda, J Matas, O Chum BMVC, 2012 | 302* | 2012 |