关注
Emilio Parisotto
Emilio Parisotto
在 cs.cmu.edu 的电子邮件经过验证 - 首页
标题
引用次数
引用次数
年份
Gemini: a family of highly capable multimodal models
G Team, R Anil, S Borgeaud, Y Wu, JB Alayrac, J Yu, R Soricut, ...
arXiv preprint arXiv:2312.11805, 2023
8522023
A generalist agent
S Reed, K Zolna, E Parisotto, SG Colmenarejo, A Novikov, G Barth-Maron, ...
arXiv preprint arXiv:2205.06175, 2022
7432022
Actor-mimic: Deep multitask and transfer reinforcement learning
E Parisotto, JL Ba, R Salakhutdinov
arXiv preprint arXiv:1511.06342, 2015
6642015
Generating images from captions with attention
E Mansimov, E Parisotto, JL Ba, R Salakhutdinov
arXiv preprint arXiv:1511.02793, 2015
5262015
The hanabi challenge: A new frontier for ai research
N Bard, JN Foerster, S Chandar, N Burch, M Lanctot, HF Song, E Parisotto, ...
Artificial Intelligence 280, 103216, 2020
3922020
Neuro-symbolic program synthesis
E Parisotto, A Mohamed, R Singh, L Li, D Zhou, P Kohli
arXiv preprint arXiv:1611.01855, 2016
3832016
Stabilizing transformers for reinforcement learning
E Parisotto, F Song, J Rae, R Pascanu, C Gulcehre, S Jayakumar, ...
International Conference on Machine Learning, 7487-7498, 2020
3552020
Neural map: Structured memory for deep reinforcement learning
E Parisotto, R Salakhutdinov
arXiv preprint arXiv:1702.08360, 2017
2922017
Efficient Exploration via State Marginal Matching
L Lee, B Eysenbach, E Parisotto, E Xing, S Levine, R Salakhutdinov
arXiv preprint arXiv:1906.05274, 2019
2582019
Gemini 1.5: Unlocking multimodal understanding across millions of tokens of context
M Reid, N Savinov, D Teplyashin, D Lepikhin, T Lillicrap, J Alayrac, ...
arXiv preprint arXiv:2403.05530, 2024
1262024
Active Neural Localization
DS Chaplot, E Parisotto, R Salakhutdinov
arXiv preprint arXiv:1801.08214, 2018
1072018
Gated path planning networks
L Lee, E Parisotto, DS Chaplot, E Xing, R Salakhutdinov
International Conference on Machine Learning, 2947-2955, 2018
982018
Global pose estimation with an attention-based recurrent network
E Parisotto, D Singh Chaplot, J Zhang, R Salakhutdinov
Proceedings of the IEEE Conference on Computer Vision and Pattern …, 2018
902018
In-context reinforcement learning with algorithm distillation
M Laskin, L Wang, J Oh, E Parisotto, S Spencer, R Steigerwald, ...
arXiv preprint arXiv:2210.14215, 2022
772022
RoboCat: A Self-Improving Foundation Agent for Robotic Manipulation
K Bousmalis, G Vezzani, D Rao, C Devin, AX Lee, M Bauza, T Davchev, ...
arXiv preprint arXiv:2306.11706, 2023
522023
Shaking the foundations: delusions in sequence models for interaction and control
PA Ortega, M Kunesch, G Delétang, T Genewein, J Grau-Moya, J Veness, ...
arXiv preprint arXiv:2110.10819, 2021
462021
Structured state space models for in-context reinforcement learning
C Lu, Y Schroecker, A Gu, E Parisotto, J Foerster, S Singh, F Behbahani
Advances in Neural Information Processing Systems 36, 2024
412024
Efficient Transformers in Reinforcement Learning using Actor-Learner Distillation
E Parisotto, R Salakhutdinov
arXiv preprint arXiv:2104.01655, 2021
382021
Imitate and Repurpose: Learning Reusable Robot Movement Skills From Human and Animal Behaviors
S Bohez, S Tunyasuvunakool, P Brakel, F Sadeghi, L Hasenclever, ...
arXiv preprint arXiv:2203.17138, 2022
342022
Concurrent Meta Reinforcement Learning
E Parisotto, S Ghosh, SB Yalamanchi, V Chinnaobireddy, Y Wu, ...
arXiv preprint arXiv:1903.02710, 2019
222019
系统目前无法执行此操作,请稍后再试。
文章 1–20