Sgpn: Similarity group proposal network for 3d point cloud instance segmentation W Wang, R Yu, Q Huang, U Neumann Proceedings of the IEEE conference on computer vision and pattern …, 2018 | 591 | 2018 |
Disn: Deep implicit surface network for high-quality single-view 3d reconstruction Q Xu, W Wang, D Ceylan, R Mech, U Neumann Advances in neural information processing systems 32, 2019 | 537 | 2019 |
Recurrent slice networks for 3d segmentation of point clouds Q Huang, W Wang, U Neumann Proceedings of the IEEE conference on computer vision and pattern …, 2018 | 518 | 2018 |
Depth-aware cnn for rgb-d segmentation W Wang, U Neumann Proceedings of the European conference on computer vision (ECCV), 135-150, 2018 | 305 | 2018 |
Shape inpainting using 3d generative adversarial network and recurrent convolutional networks W Wang, Q Huang, S You, C Yang, U Neumann Proceedings of the IEEE international conference on computer vision, 2298-2306, 2017 | 197 | 2017 |
Rsn: Range sparse net for efficient, accurate lidar 3d object detection P Sun, W Wang, Y Chai, G Elsayed, A Bewley, X Zhang, C Sminchisescu, ... Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2021 | 160 | 2021 |
Spg: Unsupervised domain adaptation for 3d object detection via semantic point generation Q Xu, Y Zhou, W Wang, CR Qi, D Anguelov Proceedings of the IEEE/CVF International Conference on Computer Vision …, 2021 | 145 | 2021 |
3dn: 3d deformation network W Wang, D Ceylan, R Mech, U Neumann Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2019 | 139 | 2019 |
Swformer: Sparse window transformer for 3d object detection in point clouds P Sun, M Tan, W Wang, C Liu, F Xia, Z Leng, D Anguelov European Conference on Computer Vision, 426-442, 2022 | 76 | 2022 |
To the point: Efficient 3d object detection in the range image with graph convolution kernels Y Chai, P Sun, J Ngiam, W Wang, B Caine, V Vasudevan, X Zhang, ... Proceedings of the IEEE/CVF conference on computer vision and pattern …, 2021 | 72 | 2021 |
A diffusion and clustering-based approach for finding coherent motions and understanding crowd scenes W Lin, Y Mi, W Wang, J Wu, J Wang, T Mei IEEE Transactions on Image Processing 25 (4), 1674-1687, 2016 | 69 | 2016 |
Finding coherent motions and semantic regions in crowd scenes: A diffusion and clustering approach W Wang, W Lin, Y Chen, J Wu, J Wang, B Sheng Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland …, 2014 | 53 | 2014 |
Stochastic dynamics for video infilling Q Xu, H Zhang, W Wang, P Belhumeur, U Neumann Proceedings of the IEEE/CVF Winter Conference on Applications of Computer …, 2020 | 19 | 2020 |
Self-paced cross-modality transfer learning for efficient road segmentation W Wang, N Wang, X Wu, S You, U Neumann 2017 IEEE International Conference on Robotics and Automation (ICRA), 1394-1401, 2017 | 19 | 2017 |
Pseudoaugment: Learning to use unlabeled data for data augmentation in point clouds Z Leng, S Cheng, B Caine, W Wang, X Zhang, J Shlens, M Tan, ... European conference on computer vision, 555-572, 2022 | 15 | 2022 |
Scene labeling using gated recurrent units with explicit long range conditioning Q Huang, W Wang, K Zhou, S You, U Neumann arXiv preprint arXiv:1611.07485, 2016 | 10 | 2016 |
Womd-lidar: Raw sensor dataset benchmark for motion forecasting K Chen, R Ge, H Qiu, R Ai-Rfou, CR Qi, X Zhou, Z Yang, S Ettinger, P Sun, ... arXiv preprint arXiv:2304.03834, 2023 | 9 | 2023 |
Extracting recurrent motion flows from crowded scene videos: A coherent motion-based approach Y Mi, L Liu, W Lin, W Wang 2015 IEEE International Conference on Multimedia Big Data, 371-376, 2015 | 4 | 2015 |
Efficient three-dimensional object detection from point clouds P Sun, W Wang, Y Chai, X Zhang, D Anguelov US Patent App. 17/527,653, 2022 | 2 | 2022 |
Scene labeling using recurrent neural networks with explicit long range contextual dependency Q Huang, W Wang, K Zhou, S You, U Neumann arXiv preprint arXiv:1611.07485, 2016 | 2 | 2016 |