Biotechnological routes based on lactic acid production from biomass C Gao, C Ma, P Xu Biotechnology advances 29 (6), 930-939, 2011 | 369 | 2011 |
Systematic metabolic engineering of Escherichia coli for high-yield production of fuel bio-chemical 2, 3-butanediol Y Xu, H Chu, C Gao, F Tao, Z Zhou, K Li, L Li, C Ma, P Xu Metabolic engineering 23, 22-33, 2014 | 169 | 2014 |
A novel whole-cell biocatalyst with NAD+ regeneration for production of chiral chemicals Z Xiao, C Lv, C Gao, J Qin, C Ma, Z Liu, P Liu, L Li, P Xu PloS one 5 (1), e8860, 2010 | 155 | 2010 |
Metabolic engineering of Enterobacter cloacae for high-yield production of enantiopure (2R, 3R)-2, 3-butanediol from lignocellulose-derived sugars L Li, K Li, Y Wang, C Chen, Y Xu, L Zhang, B Han, C Gao, F Tao, C Ma, ... Metabolic engineering 28, 19-27, 2015 | 146 | 2015 |
A newly isolated Bacillus licheniformisstrain thermophilically produces 2,3-butanediol, a platform and fuel bio-chemical L Li, L Zhang, K Li, Y Wang, C Gao, B Han, C Ma, P Xu Biotechnology for biofuels 6, 1-13, 2013 | 122 | 2013 |
Efficient conversion of phenylpyruvic acid to phenyllactic acid by using whole cells of Bacillus coagulans SDM Z Zheng, C Ma, C Gao, F Li, J Qin, H Zhang, K Wang, P Xu PloS one 6 (4), e19030, 2011 | 105 | 2011 |
Biotechnological routes to pyruvate production P Xu, J Qiu, C Gao, C Ma Journal of bioscience and bioengineering 105 (3), 169-175, 2008 | 104 | 2008 |
Microbial lactate utilization: enzymes, pathogenesis, and regulation T Jiang, C Gao, C Ma, P Xu Trends in microbiology 22 (10), 589-599, 2014 | 87 | 2014 |
Efficient production of 2, 3-butanediol from corn stover hydrolysate by using a thermophilic Bacillus licheniformis strain L Li, K Li, K Wang, C Chen, C Gao, C Ma, P Xu Bioresource technology 170, 256-261, 2014 | 86 | 2014 |
Engineering of cofactor regeneration enhances (2S,3S)-2,3-butanediol production from diacetyl Y Wang, L Li, C Ma, C Gao, F Tao, P Xu Scientific reports 3 (1), 2643, 2013 | 86 | 2013 |
Contracted but effective: production of enantiopure 2, 3-butanediol by thermophilic and GRAS Bacillus licheniformis Y Ge, K Li, L Li, C Gao, L Zhang, C Ma, P Xu Green Chemistry 18 (17), 4693-4703, 2016 | 82 | 2016 |
Production of (2S, 3S)-2, 3-butanediol and (3S)-acetoin from glucose using resting cells of Klebsiella pneumonia and Bacillus subtilis Z Liu, J Qin, C Gao, D Hua, C Ma, L Li, Y Wang, P Xu Bioresource technology 102 (22), 10741-10744, 2011 | 75 | 2011 |
Efficient utilization of hemicellulose hydrolysate for propionic acid production using Propionibacterium acidipropionici Z Liu, C Ma, C Gao, P Xu Bioresource technology 114, 711-714, 2012 | 73 | 2012 |
Lactate utilization is regulated by the FadR-type regulator LldR in Pseudomonas aeruginosa C Gao, C Hu, Z Zheng, C Ma, T Jiang, P Dou, W Zhang, B Che, Y Wang, ... Journal of bacteriology 194 (10), 2687-2692, 2012 | 68 | 2012 |
Production of N-Acetyl-d-Neuraminic Acid by Use of an Efficient Spore Surface Display System X Xu, C Gao, X Zhang, B Che, C Ma, J Qiu, F Tao, P Xu Applied and environmental microbiology 77 (10), 3197-3201, 2011 | 66 | 2011 |
Efficient 2, 3-butanediol production from cassava powder by a crop-biomass-utilizer, Enterobacter cloacae subsp. dissolvens SDM A Wang, Y Xu, C Ma, C Gao, L Li, Y Wang, F Tao, P Xu PLoS One 7 (7), e40442, 2012 | 63 | 2012 |
Production of (3S)-acetoin from diacetyl by using stereoselective NADPH-dependent carbonyl reductase and glucose dehydrogenase C Gao, L Zhang, Y Xie, C Hu, Y Zhang, L Li, Y Wang, C Ma, P Xu Bioresource technology 137, 111-115, 2013 | 62 | 2013 |
Increased glutarate production by blocking the glutaryl-CoA dehydrogenation pathway and a catabolic pathway involving l-2-hydroxyglutarate M Zhang, C Gao, X Guo, S Guo, Z Kang, D Xiao, J Yan, F Tao, W Zhang, ... Nature Communications 9 (1), 2114, 2018 | 61 | 2018 |
An artificial enzymatic reaction cascade for a cell-free bio-system based on glycerol C Gao, Z Li, L Zhang, C Wang, K Li, C Ma, P Xu Green Chemistry 17 (2), 804-807, 2015 | 61 | 2015 |
Biotechnological production of acetoin, a bio-based platform chemical, from a lignocellulosic resource by metabolically engineered Enterobacter cloacae L Zhang, Q Liu, Y Ge, L Li, C Gao, P Xu, C Ma Green Chemistry 18 (6), 1560-1570, 2016 | 60 | 2016 |