Long short-term memory and learning-to-learn in networks of spiking neurons G Bellec, D Salaj, A Subramoney, R Legenstein, W Maass Advances in neural information processing systems 31, 2018 | 550 | 2018 |
A solution to the learning dilemma for recurrent networks of spiking neurons G Bellec, F Scherr, A Subramoney, E Hajek, D Salaj, R Legenstein, ... Nature communications 11 (1), 3625, 2020 | 488 | 2020 |
Biologically inspired alternatives to backpropagation through time for learning in recurrent neural nets G Bellec, F Scherr, E Hajek, D Salaj, R Legenstein, W Maass arXiv preprint arXiv:1901.09049, 2019 | 108 | 2019 |
Spike frequency adaptation supports network computations on temporally dispersed information D Salaj, A Subramoney, C Kraisnikovic, G Bellec, R Legenstein, W Maass Elife 10, e65459, 2021 | 61 | 2021 |
A solution to the learning dilemma for recurrent networks of spiking neurons. bioRxiv G Bellec, F Scherr, A Subramoney, E Hajek, D Salaj, R Legenstein, ... 00000, 738385, 2019 | 11 | 2019 |
Eligibility traces provide a data-inspired alternative to backpropagation through time G Bellec, F Scherr, E Hajek, D Salaj, A Subramoney, R Legenstein, ... Real Neurons {\&} Hidden Units: Future directions at the intersection of …, 2019 | 10 | 2019 |
Spike-frequency adaptation provides a long short-term memory to networks of spiking neurons D Salaj, A Subramoney, C Kraisnikovic, G Bellec, R Legenstein, W Maass bioRxiv 5 (number), 2020 | 9 | 2020 |
A solution to the learning dilemma for recurrent networks of spiking neurons. bioRxiv: 738385 G Bellec, F Scherr, A Subramoney, E Hajek, D Salaj, R Legenstein, ... | 9 | 2019 |
Long short-term memory and learning-to-learn in networks of spiking neurons. arXiv G Bellec, D Salaj, A Subramoney, R Legenstein, W Maass arXiv preprint arXiv:1803.09574, 2018 | 8 | 2018 |
Biologically inspired alternatives to backpropagation through time for learning in recurrent neural nets. arXiv G Bellec, F Scherr, E Hajek, D Salaj, R Legenstein, W Maass arXiv preprint arXiv:1901.09049, 2019 | 5 | 2019 |
Bio-Inspired Neuromorphic AI Methods Enables Privacy Respecting Security and Surveillance N Delilovic, D Salaj Transactions on Advanced Research, 2021 | 1 | 2021 |
Slow processes of neurons enable a biologically plausible approximation to policy gradient A Subramoney, G Bellec, F Scherr, A Subramoney, E Hajek, D Salaj, ... 33nd NeurIPS workshop, 2019 | 1 | 2019 |
Biologically inspired alternatives to backpropagation through time for learning in recurrent neural networks G Bellec, F Scherr, D Salaj, E Hajek, R Legenstein, W Maass | 1 | |
Exploiting Foundation Models for Spoken Language Identification. B Augenstein, D Salaj LWDA, 28-40, 2023 | | 2023 |
on STORE-RECALL task. D Salaj, A Subramoney, C Kraišnikovic, G Bellec, R Legenstein, W Maass | | 2021 |
Spike frequency adaptation supports network computations D Salaj, A Subramoney, C Kraišnikovic, G Bellec, R Legenstein, W Maass | | 2020 |
Spike-frequency adaptation contributes long short-term memory to networks of spiking neurons A Subramoney, C Kraisnikovic, D Salaj, GEF Bellec, R Legenstein, ... 2020 Bernstein Conference, 2020 | | 2020 |
Supplementary information for: Long short-term memory and learning-to-learn in networks of spiking neurons G Bellec, D Salaj, A Subramoney, R Legenstein, W Maass | | |
A solution to the learning dilemma for recurrent G Bellec, F Scherr, A Subramoney, E Hajek, D Salaj, R Legenstein, ... | | |