关注
John E. Herr
John E. Herr
Memorial Sloan-Kettering Cancer Center
在 choderalab.org 的电子邮件经过验证
标题
引用次数
引用次数
年份
The TensorMol-0.1 model chemistry: a neural network augmented with long-range physics
K Yao, JE Herr, DW Toth, R Mckintyre, J Parkhill
Chemical science 9 (8), 2261-2269, 2018
4492018
Origin of the Size-Dependent Stokes Shift in CsPbBr3 Perovskite Nanocrystals
MC Brennan, JE Herr, TS Nguyen-Beck, J Zinna, S Draguta, S Rouvimov, ...
Journal of the American Chemical Society 139 (35), 12201-12208, 2017
2932017
Few-shot graph learning for molecular property prediction
Z Guo, C Zhang, W Yu, J Herr, O Wiest, M Jiang, NV Chawla
Proceedings of the web conference 2021, 2559-2567, 2021
1412021
Intrinsic bond energies from a bonds-in-molecules neural network
K Yao, JE Herr, SN Brown, J Parkhill
The journal of physical chemistry letters 8 (12), 2689-2694, 2017
1242017
The many-body expansion combined with neural networks
K Yao, JE Herr, J Parkhill
The Journal of chemical physics 146 (1), 2017
1112017
Metadynamics for training neural network model chemistries: A competitive assessment
JE Herr, K Yao, R McIntyre, DW Toth, J Parkhill
The Journal of chemical physics 148 (24), 2018
732018
Spice, a dataset of drug-like molecules and peptides for training machine learning potentials
P Eastman, PK Behara, DL Dotson, R Galvelis, JE Herr, JT Horton, Y Mao, ...
Scientific Data 10 (1), 11, 2023
502023
On the use of real-world datasets for reaction yield prediction
M Saebi, B Nan, JE Herr, J Wahlers, Z Guo, AM Zurański, T Kogej, ...
Chemical science 14 (19), 4997-5005, 2023
402023
Compressing physics with an autoencoder: Creating an atomic species representation to improve machine learning models in the chemical sciences
JE Herr, K Koh, K Yao, J Parkhill
The Journal of chemical physics 151 (8), 2019
312019
End-to-end differentiable construction of molecular mechanics force fields
Y Wang, J Fass, B Kaminow, JE Herr, D Rufa, I Zhang, I Pulido, M Henry, ...
Chemical Science 13 (41), 12016-12033, 2022
292022
End-to-end differentiable molecular mechanics force field construction
Y Wang, J Fass, B Kaminow, JE Herr, D Rufa, I Zhang, I Pulido, M Henry, ...
arXiv preprint arXiv:2010.01196, 2020
142020
Graph neural networks for predicting chemical reaction performance
M Saebi, B Nan, J Herr, J Wahlers, O Wiest, N Chawla
82021
Fourier Series for Fractals in Two Dimensions
JE Herr, PET Jorgensen, ES Weber
From Classical Analysis to Analysis on Fractals: A Tribute to Robert …, 2023
22023
Bond Energies from a Diatomics-in-Molecules Neural Network
K Yao, J Herr, S Brown, J Parkhill
arXiv preprint arXiv:1703.08640, 2017
22017
Compressing physical properties of atomic species for improving predictive chemistry
JE Herr, K Koh, K Yao, J Parkhill
arXiv preprint arXiv:1811.00123, 2018
12018
Fourier series for singular measures in higher dimensions
C Berner, JE Herr, PET Jorgensen, ES Weber
arXiv preprint arXiv:2402.15950, 2024
2024
Supplementary information for: Development of neural network models for prediction of molecular properties
JE Herr
2020
Rationalizing the size-dependent Stokes shift in CsPbBr3 nanocrystals
M Brennan, J Herr, T Nguyen-Beck, J Parkhill, M Kuno
ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY 255, 2018
2018
系统目前无法执行此操作,请稍后再试。
文章 1–18