Augmenting physical models with deep networks for complex dynamics forecasting Y Yin, V Le Guen, J Dona, E de Bézenac, I Ayed, N Thome, P Gallinari Journal of Statistical Mechanics: Theory and Experiment 2021 (12), 124012, 2021 | 164 | 2021 |
Pde-driven spatiotemporal disentanglement J Donà, JY Franceschi, S Lamprier, P Gallinari arXiv preprint arXiv:2008.01352, 2020 | 39 | 2020 |
Generalizing to new physical systems via context-informed dynamics model M Kirchmeyer, Y Yin, J Donà, N Baskiotis, A Rakotomamonjy, P Gallinari International Conference on Machine Learning, 11283-11301, 2022 | 31 | 2022 |
Differentiable feature selection, a reparameterization approach J Donà, P Gallinari Machine Learning and Knowledge Discovery in Databases. Research Track …, 2021 | 8 | 2021 |
Constrained physical-statistics models for dynamical system identification and prediction J Donà, M Déchelle, M Lévy, P Gallinari ICLR 2022-The Tenth International Conference on Learning Representations, 2022 | 7 | 2022 |
Bridging dynamical models and deep networks to solve forward and inverse problems M Déchelle, J Donà, K Plessis-Fraissard, P Gallinari, M Lévy NeurIPS 2020-1st NeurIPS workshop on Interpretable Inductive Biases and …, 2021 | 5 | 2021 |
Gradient-informed quality diversity for the illumination of discrete spaces R Boige, G Richard, J Dona, T Pierrot, A Cully Proceedings of the Genetic and Evolutionary Computation Conference, 119-128, 2023 | 3 | 2023 |
Learning the Language of Protein Structure B Gaujac, J Donà, L Copoiu, T Atkinson, T Pierrot, TD Barrett arXiv preprint arXiv:2405.15840, 2024 | 2 | 2024 |
Statistical learning of physical dynamics J Donà Sorbonne Université, 2022 | | 2022 |