Inverting gradients-how easy is it to break privacy in federated learning? J Geiping, H Bauermeister, H Dröge, M Moeller Advances in neural information processing systems 33, 16937-16947, 2020 | 1121 | 2020 |
Mitral valve segmentation using robust nonnegative matrix factorization H Dröge, B Yuan, R Llerena, JT Yen, M Moeller, AL Bertozzi Journal of Imaging 7 (10), 213, 2021 | 4 | 2021 |
Evaluating Adversarial Robustness of Low dose CT Recovery K Vaishnavi Gandikota, P Chandramouli, H Droege, M Moeller arXiv e-prints, arXiv: 2402.11557, 2024 | 3* | 2024 |
Explorable Data Consistent CT Reconstruction. H Dröge, Y Bahat, F Heide, M Möller BMVC, 746, 2022 | 3 | 2022 |
Learning or modelling? an analysis of single image segmentation based on scribble information H Dröge, M Moeller 2021 IEEE International Conference on Image Processing (ICIP), 2274-2278, 2021 | 3 | 2021 |
Non-Smooth Energy Dissipating Networks H Dröge, T Möllenhoff, M Möller 2022 IEEE International Conference on Image Processing (ICIP), 3281-3285, 2022 | 2 | 2022 |
Kissing to find a match: efficient low-rank permutation representation H Dröge, Z Lähner, Y Bahat, O Martorell Nadal, F Heide, M Möller Advances in Neural Information Processing Systems 36, 2024 | 1 | 2024 |
VHS: High-Resolution Iterative Stereo Matching with Visual Hull Priors M Plack, H Dröge, L Van Holland, MB Hullin arXiv preprint arXiv:2406.02552, 2024 | | 2024 |
Robustness and Exploration of Variational and Machine Learning Approaches to Inverse Problems: An Overview A Auras, KV Gandikota, H Droege, M Moeller arXiv preprint arXiv:2402.12072, 2024 | | 2024 |
On the confluence of machine learning and model-based energy minimization methods for computer vision H Dröge | | 2024 |