Parametrized quantum policies for reinforcement learning S Jerbi, C Gyurik, S Marshall, H Briegel, V Dunjko Advances in Neural Information Processing Systems 34, 28362-28375, 2021 | 140 | 2021 |
High dimensional quantum machine learning with small quantum computers SC Marshall, C Gyurik, V Dunjko Quantum 7, 1078, 2023 | 18 | 2023 |
Shadows of quantum machine learning S Jerbi, C Gyurik, SC Marshall, R Molteni, V Dunjko Nature Communications 15 (1), 5676, 2024 | 13 | 2024 |
High dimensional quantum learning with small quantum computers SC Marshall, C Gyurik, V Dunjko arXiv preprint arXiv:2203.13739, 2022 | 4 | 2022 |
All this for one qubit? Bounds on local circuit cutting schemes SC Marshall, J Tura, V Dunjko arXiv preprint arXiv:2303.13422, 2023 | 2 | 2023 |
Understanding polysemanticity in neural networks through coding theory SC Marshall, JH Kirchner arXiv preprint arXiv:2401.17975, 2024 | 1 | 2024 |
On Bounded Advice Classes S Marshall, C Gyurik, V Dunjko arXiv preprint arXiv:2405.18155, 2024 | | 2024 |
PDQMA= DQMA= NEXP: QMA With Hidden Variables and Non-collapsing Measurements S Aaronson, S Grewal, V Iyer, SC Marshall, R Ramachandran arXiv preprint arXiv:2403.02543, 2024 | | 2024 |
Understanding polysemanticity and improved interpretability in neural networks through coding theory SC Marshall, JH Kirchner | | |