关注
Bingbin Liu
Bingbin Liu
PhD Student in Machine Learning Department, Carnegie Mellon University
在 cs.cmu.edu 的电子邮件经过验证 - 首页
标题
引用次数
引用次数
年份
Learning to decompose and disentangle representations for video prediction
JT Hsieh, B Liu, DA Huang, LF Fei-Fei, JC Niebles
Advances in neural information processing systems 31, 2018
3402018
Spatiotemporal relationship reasoning for pedestrian intent prediction
B Liu, E Adeli, Z Cao, KH Lee, A Shenoi, A Gaidon, JC Niebles
IEEE Robotics and Automation Letters 5 (2), 3485-3492, 2020
1522020
Transformers learn shortcuts to automata
B Liu, JT Ash, S Goel, A Krishnamurthy, C Zhang
arXiv preprint arXiv:2210.10749, 2022
1172022
A computer vision system for deep learning-based detection of patient mobilization activities in the ICU
S Yeung, F Rinaldo, J Jopling, B Liu, R Mehra, NL Downing, M Guo, ...
NPJ digital medicine 2 (1), 11, 2019
1122019
Temporal modular networks for retrieving complex compositional activities in videos
B Liu, S Yeung, E Chou, DA Huang, L Fei-Fei, JC Niebles
Proceedings of the European Conference on Computer Vision (ECCV), 552-568, 2018
862018
Exposing attention glitches with flip-flop language modeling
B Liu, J Ash, S Goel, A Krishnamurthy, C Zhang
Advances in Neural Information Processing Systems 36, 2024
242024
Tinygsm: achieving> 80% on gsm8k with small language models
B Liu, S Bubeck, R Eldan, J Kulkarni, Y Li, A Nguyen, R Ward, Y Zhang
arXiv preprint arXiv:2312.09241, 2023
192023
Analyzing and improving the optimization landscape of noise-contrastive estimation
B Liu, E Rosenfeld, P Ravikumar, A Risteski
arXiv preprint arXiv:2110.11271, 2021
172021
Spatiotemporal relationship reasoning for pedestrian intent prediction
E Adeli-mosabbeb, K Lee, A Gaidon, B Liu, Z Cao, JC Niebles
US Patent 11,205,082, 2021
142021
3d point cloud-based visual prediction of icu mobility care activities
B Liu, M Guo, E Chou, R Mehra, S Yeung, NL Downing, F Salipur, ...
Machine learning for healthcare conference, 17-29, 2018
142018
Transformers are uninterpretable with myopic methods: a case study with bounded Dyck grammars
K Wen, Y Li, B Liu, A Risteski
Advances in Neural Information Processing Systems 36, 2024
13*2024
Masked prediction tasks: a parameter identifiability view
B Liu, D Hsu, P Ravikumar, A Risteski
arXiv preprint arXiv:2202.09305, 2022
10*2022
Generalized boosting
A Suggala, B Liu, P Ravikumar
Advances in neural information processing systems 33, 8787-8797, 2020
82020
Understanding augmentation-based self-supervised representation learning via rkhs approximation
R Zhai, B Liu, A Risteski, Z Kolter, P Ravikumar
arXiv preprint arXiv:2306.00788, 2023
52023
Contrastive learning of strong-mixing continuous-time stochastic processes
B Liu, P Ravikumar, A Risteski
International Conference on Artificial Intelligence and Statistics, 3151-3159, 2021
52021
Understanding augmentation-based self-supervised representation learning via rkhs approximation and regression
R Zhai, B Liu, A Risteski, Z Kolter, P Ravikumar
arXiv preprint arXiv:2306.00788, 2023
22023
A Computer Vision System to Detect Bedside Patient Mobilization
F Rinaldo, J Jopling, B Liu, R Mehra, L Downing, M Guo, G Bianconi, ...
Nature Digital Medicine, 2019
2019
Progressive distillation improves feature learning via implicit curriculum
A Panigrahi, B Liu, S Malladi, A Risteski, S Goel
ICML 2024 Workshop on Mechanistic Interpretability, 0
Augmentation Alone Leads to Generalization
R Zhai, B Liu, A Risteski, JZ Kolter, PK Ravikumar
ICLR 2024 Workshop on Reliable and Responsible Foundation Models, 0
EE376A (Winter 2019)
B Liu, JT Hsieh
系统目前无法执行此操作,请稍后再试。
文章 1–20