关注
高橋将宜
高橋将宜
其他姓名Masayoshi Takahashi
長崎大学情報データ科学部 (Nagasaki University)
在 nagasaki-u.ac.jp 的电子邮件经过验证 - 首页
标题
引用次数
引用次数
年份
Statistical Inference in Missing Data by MCMC and Non-MCMC Multiple Imputation Algorithms: Assessing the Effects of Between-Imputation Iterations
M Takahashi
Data Science Journal 16 (37), 1-17, 2017
692017
欠測データ処理: Rによる単一代入法と多重代入法
高橋将宜, 渡辺美智子
共立出版, 2017
32*2017
統計的因果推論の理論と実装:潜在的結果変数と欠測データ
高橋将宜
共立出版, 2022
18*2022
Multiple imputation of missing values in economic surveys: Comparison of competing algorithms
M Takahashi, T Ito
Proceedings of The 59th World Statistics Congress of the International …, 2013
162013
Multiple Ratio Imputation by the EMB Algorithm: Theory and Simulation
M Takahashi
Journal of Modern Applied Statistical Methods 16 (1), 630-656, 2017
152017
様々な多重代入法アルゴリズムの比較~大規模経済系データを用いた分析~
高橋将宜, 伊藤孝之
統計研究彙報 71 (3), 39-82, 2014
15*2014
Multiple Imputation of Turnover in EDINET Data: Toward the Improvement of Imputation for the Economic Census
M Takahashi, T Ito
Work Session on Statistical Data Editing, UNECE, 24-26, 2012
152012
Imputing the Mean of a Heteroskedastic Log-Normal Missing Variable: A Unified Approach to Ratio Imputation
M Takahashi, M Iwasaki, H Tsubaki
Statistical Journal of the IAOS 33 (3), 763-776, 2017
142017
JMASM44: Implementing Multiple Ratio Imputation by the EMB Algorithm (R)
M Takahashi
Journal of Modern Applied Statistical Methods 16 (1), 657-673, 2017
72017
諸外国の公的統計における欠測値の対処法:集計値ベースと公開型ミクロデータの代入法
高橋将宜
統計学 112, 65-83, 2017
6*2017
経済調査における売上高の欠測値補定方法について~多重代入法による精度の評価~
高橋将宜, 伊藤孝之
統計研究彙報 70 (2), 19-86, 2013
4*2013
Data imputation in deep neural network to enhance breast cancer detection
K Ganesan, S Pichai, MS Kavitha, M Takahashi
International Journal of Imaging Systems and Technology, 2022
32022
Multiple imputation regression discontinuity designs: Alternative to regression discontinuity designs to estimate the local average treatment effect at the cutoff
M Takahashi
Communications in Statistics - Simulation and Computation, 2021
32021
A New Robust Ratio Estimator by Modified Cook’s Distance for Missing Data Imputation
M Takahashi
Japanese Journal of Statistics and Data Science, 2022
22022
公的統計における欠測値補定の研究:多重代入法と単一代入法
高橋将宜, 阿部穂日, 野呂竜夫
製表技術参考資料 30, 1-95, 2015
2*2015
多重代入法による匿名データの解析特性の改善について― 全国消費実態調査を例に ―
高橋将宜
統計学, 15-29, 2018
12018
Diagnosing the Imputation of Missing Values in Official Economic Statistics via Multiple Imputation: Unveiling the Invisible Missing Values
M Takahashi
International Association for Official Statistics (IAOS) Conference 2014, 2014
12014
An Assessment of Automatic Editing via the Contamination Model and Multiple Imputation
M Takahashi
Work Session on Statistical Data Editing, UNECE, 1-10, 2014
12014
多重代入法による欠測データの統計解析入門
高橋将宜
社会と調査, 98-106, 2023
2023
Association between COVID-19 emergency declarations and physical activity among community-dwelling older adults enrolled in a physical activity measurement program: Evidence …
I Chiba, M Takahashi, S Lee, S Bae, K Makino, O Katayama, K Harada, ...
BMC Public Health 23 (998), 1-12, 2023
2023
系统目前无法执行此操作,请稍后再试。
文章 1–20