关注
Jeremy McGibbon
Jeremy McGibbon
Machine Learning Researcher, Allen Institute for Artificial Intelligence
在 uw.edu 的电子邮件经过验证
标题
引用次数
引用次数
年份
Correcting weather and climate models by machine learning nudged historical simulations
O Watt‐Meyer, ND Brenowitz, SK Clark, B Henn, A Kwa, J McGibbon, ...
Geophysical Research Letters 48 (15), e2021GL092555, 2021
752021
Cloud System Evolution in the Trades (CSET): Following the evolution of boundary layer cloud systems with the NSF–NCAR GV
B Albrecht, V Ghate, J Mohrmann, R Wood, P Zuidema, C Bretherton, ...
Bulletin of the American Meteorological Society 100 (1), 93-121, 2019
682019
Correcting coarse‐grid weather and climate models by machine learning from global storm‐resolving simulations
CS Bretherton, B Henn, A Kwa, ND Brenowitz, O Watt‐Meyer, J McGibbon, ...
Journal of Advances in Modeling Earth Systems 14 (2), e2021MS002794, 2022
532022
Skill of ship‐following large‐eddy simulations in reproducing MAGIC observations across the northeast P acific stratocumulus to cumulus transition region
J McGibbon, CS Bretherton
Journal of Advances in Modeling Earth Systems 9 (2), 810-831, 2017
342017
Machine learning climate model dynamics: Offline versus online performance
ND Brenowitz, B Henn, J McGibbon, SK Clark, A Kwa, WA Perkins, ...
arXiv preprint arXiv:2011.03081, 2020
332020
Correcting a 200 km resolution climate model in multiple climates by machine learning from 25 km resolution simulations
SK Clark, ND Brenowitz, B Henn, A Kwa, J McGibbon, WA Perkins, ...
Journal of Advances in Modeling Earth Systems 14 (9), e2022MS003219, 2022
232022
Lagrangian evolution of the Northeast Pacific marine boundary layer structure and cloud during CSET
J Mohrmann, CS Bretherton, IL McCoy, J McGibbon, R Wood, V Ghate, ...
Monthly weather review 147 (12), 4681-4700, 2019
212019
sympl (v. 0.4. 0) and climt (v. 0.15. 3)–towards a flexible framework for building model hierarchies in Python
JM Monteiro, J McGibbon, R Caballero
Geoscientific Model Development 11 (9), 3781-3794, 2018
182018
Single‐column emulation of reanalysis of the northeast Pacific marine boundary layer
J McGibbon, CS Bretherton
Geophysical Research Letters 46 (16), 10053-10060, 2019
142019
Productive performance engineering for weather and climate modeling with python
T Ben-Nun, L Groner, F Deconinck, T Wicky, E Davis, J Dahm, OD Elbert, ...
SC22: International Conference for High Performance Computing, Networking …, 2022
122022
fv3gfs-wrapper: a python wrapper of the fv3gfs atmospheric model
J McGibbon, ND Brenowitz, M Cheeseman, SK Clark, JPS Dahm, ...
Geoscientific Model Development 14 (7), 4401-4409, 2021
122021
Drivers of seasonal variability in marine boundary layer aerosol number concentration investigated using a steady state approach
J Mohrmann, R Wood, J McGibbon, R Eastman, E Luke
Journal of Geophysical Research: Atmospheres 123 (2), 1097-1112, 2018
122018
sympl (v. 0.4. 0) and climt (v. 0.15. 3)–towards a flexible framework for building model hierarchies in Python, Geosci. Model Dev., 11, 3781–3794
JM Monteiro, J McGibbon, R Caballero
112018
ACE: A fast, skillful learned global atmospheric model for climate prediction
O Watt-Meyer, G Dresdner, J McGibbon, SK Clark, B Henn, J Duncan, ...
arXiv preprint arXiv:2310.02074, 2023
102023
Machine‐learned climate model corrections from a global storm‐resolving model: Performance across the annual cycle
A Kwa, SK Clark, B Henn, ND Brenowitz, J McGibbon, O Watt‐Meyer, ...
Journal of Advances in Modeling Earth Systems 15 (5), e2022MS003400, 2023
82023
Assessment of precipitating marine stratocumulus clouds in the E3SMv1 atmosphere model: A case study from the ARM MAGIC field campaign
X Zheng, SA Klein, VP Ghate, S Santos, J McGibbon, P Caldwell, ...
Monthly Weather Review 148 (8), 3341-3359, 2020
82020
sympl (v. 0.4. 0) and climt (v. 0.15. 3)–towards a flexible framework for building model hierarchies in Python, Geosci. Model Dev., 11, 3781–3794, 10.5194
JM Monteiro, J McGibbon, R Caballero
gmd-11-3781-2018, 2018
82018
fv3gfs-wrapper: a Python wrapper of the FV3GFS atmospheric model, Geosci. Model Dev., 14, 4401–4409
J McGibbon, ND Brenowitz, M Cheeseman, SK Clark, JPS Dahm, ...
52021
Machine learning climate model dynamics: Offline versus online performance, arXiv
ND Brenowitz, B Henn, J McGibbon, SK Clark, A Kwa, WA Perkins, ...
arXiv preprint arXiv:2011.03081, 2020
52020
Improving the predictions of ML-corrected climate models with novelty detection
C Sanford, A Kwa, O Watt-Meyer, S Clark, N Brenowitz, J McGibbon, ...
arXiv preprint arXiv:2211.13354, 2022
42022
系统目前无法执行此操作,请稍后再试。
文章 1–20