关注
Alexander Fengler
Alexander Fengler
在 brown.edu 的电子邮件经过验证 - 首页
标题
引用次数
引用次数
年份
Likelihood approximation networks (LANs) for fast inference of simulation models in cognitive neuroscience
A Fengler, LN Govindarajan, T Chen, MJ Frank
Elife 10, e65074, 2021
732021
Beyond drift diffusion models: Fitting a broad class of decision and reinforcement learning models with HDDM
A Fengler, K Bera, ML Pedersen, MJ Frank
Journal of cognitive neuroscience 34 (10), 1780-1805, 2022
222022
A Hitchhiker’s Guide to Bayesian Hierarchical Drift-Diffusion Modeling with docker-HDDM
W Pan, H Geng, L Zhang, A Fengler, M Frank, R Zhang, H Chuan-Peng
72022
Predicted utility modulates working memory fidelity in the brain
EJ Levin, JA Brissenden, A Fengler, D Badre
Cortex 160, 115-133, 2023
62023
Encoder-Decoder Neural Architectures for Fast Amortized Inference of Cognitive Process Models.
A Fengler, LN Govindarajan, MJ Frank
CogSci, 2020
52020
ABC-NN: Approximate Bayesian Computation with Neural Networks to learn likelihood functions for efficient parameter estimation
A Fengler, M Frank
12019
Modelling History-Dependent Evidence Accumulation across Species
A Urai, ZG Gunes, K Fernandez, A Fengler
Proceedings of the Annual Meeting of the Cognitive Science Society 46, 2024
2024
The Perils of Omitting Omissions when Modeling Evidence Accumulation
X Leng, A Fengler, A Shenhav, MJ Frank
Proceedings of the Annual Meeting of the Cognitive Science Society 46, 2024
2024
Likelihood Approximations for Bayesian Analysis of Sequential Sampling Models
A Fengler
Brown University Providence, Rhode Island, 2023
2023
Beyond Drift Diffusion Models: Fitting a broad class of decision and RL models with HDDM
A Fengler, K Bera, ML Pedersen, MJ Frank
bioRxiv, 2022.06. 19.496747, 2022
2022
Likelihood Approximation Networks enable fast estimation of generalized sequential sampling models as the choice rule in RL
K Bera, A Fengler, MJ Frank
系统目前无法执行此操作,请稍后再试。
文章 1–11