Amorphous silicon carbide ultramicroelectrode arrays for neural stimulation and recording F Deku, Y Cohen, A Joshi-Imre, A Kanneganti, TJ Gardner, SF Cogan Journal of neural engineering 15 (1), 016007, 2018 | 88 | 2018 |
Hidden neural states underlie canary song syntax Y Cohen, J Shen, D Semu, DP Leman, WA Liberti III, LN Perkins, ... Nature 582 (7813), 539-544, 2020 | 47 | 2020 |
Automated annotation of birdsong with a neural network that segments spectrograms Y Cohen, DA Nicholson, A Sanchioni, EK Mallaber, V Skidanova, ... Elife 11, e63853, 2022 | 33 | 2022 |
Amorphous silicon carbide platform for next generation penetrating neural interface designs F Deku, CL Frewin, A Stiller, Y Cohen, S Aqeel, A Joshi-Imre, B Black, ... Micromachines 9 (10), 480, 2018 | 33 | 2018 |
High-order feature-based mixture models of classification learning predict individual learning curves and enable personalized teaching Y Cohen, E Schneidman Proceedings of the National Academy of Sciences 110 (2), 684-689, 2013 | 19 | 2013 |
The geometry of neuronal representations during rule learning reveals complementary roles of cingulate cortex and putamen Y Cohen, E Schneidman, R Paz Neuron 109 (5), 839-851. e9, 2021 | 15 | 2021 |
Large-scale cellular-resolution imaging of neural activity in freely behaving mice DP Leman, IA Chen, KA Bolding, J Tai, LK Wilmerding, HJ Gritton, ... BioRxiv, 2021.01. 15.426462, 2021 | 13 | 2021 |
TweetyNet: a neural network that enables high-throughput, automated annotation of birdsong Y Cohen, D Nicholson, A Sanchioni, EK Mallaber, V Skidanova, ... BioRxiv, 2020.08. 28.272088, 2020 | 13 | 2020 |
Recent advances at the interface of neuroscience and artificial neural networks Y Cohen, TA Engel, C Langdon, GW Lindsay, T Ott, MAK Peters, ... Journal of Neuroscience 42 (45), 8514-8523, 2022 | 7 | 2022 |
Hidden neural states underlie canary song syntax Y Cohen, J Shen, D Semu, DP Leman, WA Liberti III, LN Perkins, ... bioRxiv, 561761, 2019 | 3 | 2019 |
It all depends on the context, but also on the amygdala Y Cohen, R Paz Neuron 87 (4), 678-680, 2015 | 3 | 2015 |
vak: a neural network framework for researchers studying animal acoustic communication D Nicholson, Y Cohen Python in Science Conference, 59-67, 2023 | | 2023 |
A novel approach to the empirical characterization of learning in biological systems Y Cohen, P Cvitanović, SA Solla BioRxiv, 2021.01. 10.426118, 2021 | | 2021 |
A geometric representation unveils learning dynamics in primate neurons Y Cohen, E Schneidman, R Paz | | 2019 |
A geometric representation unveils rule-learning dynamics in primate neurons Y Cohen, E Schneidman, R Paz bioRxiv, 561670, 2019 | | 2019 |
Calcium imaging in canary (serinus canaria) HVC reveals latent states supporting behavioral sequencing with long range history dependence Y Cohen, J Shen, D Semu, TM Otchy, TJ Gardner 2018 Conference on Cognitive Computational Neuroscience, 2018 | | 2018 |
The neural building blocks of classification learning Y Cohen PQDT-Global, 2016 | | 2016 |
Learning in a noisy environment: a Lyapunov equation approach SA Solla, Y Cohen, P Cvitanovic APS March Meeting Abstracts 2016, F40. 004, 2016 | | 2016 |
Time course of synaptic potentiation and de-potentiation of the ascending synaptic inputs to the piriform cortex during complex olfactory learning. Y Cohen, E Barkai JOURNAL OF MOLECULAR NEUROSCIENCE 45 (SUPPL 1), S26-S26, 2011 | | 2011 |
Predicting individual learning dynamics using maximum entropy models Y Cohen, E Schneidman JOURNAL OF MOLECULAR NEUROSCIENCE 45 (SUPPL 1), S26-S27, 2011 | | 2011 |