关注
John L.A. Gardner
John L.A. Gardner
Machine Learning for Science, University of Oxford
在 chem.ox.ac.uk 的电子邮件经过验证 - 首页
标题
引用次数
引用次数
年份
How to validate machine-learned interatomic potentials
JD Morrow, JLA Gardner, VL Deringer
The Journal of chemical physics 158 (12), 2023
442023
Synthetic data enable experiments in atomistic machine learning
JLA Gardner, ZF Beaulieu, VL Deringer
Digital Discovery 2 (3), 651-662, 2023
92023
Synthetic pre-training for neural-network interatomic potentials
JLA Gardner, KT Baker, VL Deringer
Machine Learning: Science and Technology 5 (1), 015003, 2024
62024
Coarse-grained versus fully atomistic machine learning for zeolitic imidazolate frameworks
ZF Beaulieu, TC Nicholas, JLA Gardner, AL Goodwin, VL Deringer
Chemical Communications 59 (76), 11405-11408, 2023
42023
Using spectroscopy to probe relaxation, decoherence, and localization of photoexcited states in π-conjugated polymers
W Barford, JLA Gardner, JR Mannouch
Faraday Discussions 221, 281-298, 2020
22020
Data as the next challenge in atomistic machine learning
C Ben Mahmoud, JLA Gardner, VL Deringer
Nature Computational Science, 1-4, 2024
2024
系统目前无法执行此操作,请稍后再试。
文章 1–6