关注
Michele Linardi
Michele Linardi
Postdoctoral Researcher - Université de Paris (Paris University)
在 parisdescartes.fr 的电子邮件经过验证 - 首页
标题
引用次数
引用次数
年份
Matrix profile X: VALMOD-scalable discovery of variable-length motifs in data series
M Linardi, Y Zhu, T Palpanas, E Keogh
Proceedings of the 2018 international conference on management of data, 1053 …, 2018
1022018
Matrix profile goes MAD: variable-length motif and discord discovery in data series
M Linardi, Y Zhu, T Palpanas, E Keogh
Data Mining and Knowledge Discovery 34, 1022-1071, 2020
652020
Automated anomaly detection in large sequences
P Boniol, M Linardi, F Roncallo, T Palpanas
2020 IEEE 36th international conference on data engineering (ICDE), 1834-1837, 2020
562020
Scalable, variable-length similarity search in data series: The ULISSE approach
M Linardi, T Palpanas
Proceedings of the VLDB Endowment 11 (13), 2236-2248, 2018
562018
Unsupervised and scalable subsequence anomaly detection in large data series
P Boniol, M Linardi, F Roncallo, T Palpanas, M Meftah, E Remy
The VLDB Journal 30 (6), 909-931, 2021
502021
Ulisse: Ultra compact index for variable-length similarity search in data series
M Linardi, T Palpanas
2018 IEEE 34th International Conference on Data Engineering (ICDE), 1356-1359, 2018
302018
VALMOD: A suite for easy and exact detection of variable length motifs in data series
M Linardi, Y Zhu, T Palpanas, E Keogh
Proceedings of the 2018 International Conference on Management of Data, 1757 …, 2018
282018
Functional dependencies unleashed for scalable data exchange
A Bonifati, I Ileana, M Linardi
Proceedings of the 28th International Conference on Scientific and …, 2016
242016
Scalable data series subsequence matching with ULISSE
M Linardi, T Palpanas
The VLDB Journal 29 (6), 1449-1474, 2020
232020
SAD: an unsupervised system for subsequence anomaly detection
P Boniol, M Linardi, F Roncallo, T Palpanas
2020 IEEE 36th International Conference on Data Engineering (ICDE), 1778-1781, 2020
212020
ChaseFUN: a Data Exchange Engine for Functional Dependencies at Scale.
A Bonifati, I Ileana, M Linardi
EDBT, 534-537, 2017
62017
Studying Socially Unacceptable Discourse Classification (SUD) through different eyes:" Are we on the same page?"
BM Carneiro, M Linardi, J Longhi
arXiv preprint arXiv:2308.04180, 2023
22023
Correction to: Unsupervised and scalable subsequence anomaly detection in large data series.
P Boniol, M Linardi, F Roncallo, T Palpanas, M Meftah, E Remy
VLDB J. 32 (2), 469, 2023
22023
Effective and efficient variable-length data series analytics
M Linardi
arXiv preprint arXiv:2009.11648, 2020
22020
Evaluating Explanation Methods of Multivariate Time Series Classification through Causal Lenses
E Vareille, A Abbas, M Linardi, V Christophides
2023 IEEE 10th International Conference on Data Science and Advanced …, 2023
12023
Towards explainable ai4eo: An explainable deep learning approach for crop type mapping using satellite images time series
A Abbas, M Linardi, E Vareille, V Christophides, C Paris
IGARSS 2023-2023 IEEE International Geoscience and Remote Sensing Symposium …, 2023
12023
Studying Socially Unacceptable Discourse Classification (SUD) through different eyes:" Are we on the same page?"
B Machado Carneiro, M Linardi, J Longhi
arXiv e-prints, arXiv: 2308.04180, 2023
2023
Determination of health status of systems equipped with sensors
T Palpanas, M Linardi, P Boniol, F Roncallo, M Meftah, R Emmanuel
US Patent 11,471,113, 2022
2022
Unsupervised Time Series Anomaly Detection: The Road to Effective Explainability
M Linardi, V Christophides
Extraction et Gestion des Connaissances: EGC'2022, 2022
2022
Variable-length similarity search for very large data series: subsequence matching, motif and discord detection| Theses. fr
M Linardi
Sorbonne Paris Cité, 2019
2019
系统目前无法执行此操作,请稍后再试。
文章 1–20