关注
Dorian Florescu
Dorian Florescu
在 bath.ac.uk 的电子邮件经过验证 - 首页
标题
引用次数
引用次数
年份
The surprising benefits of hysteresis in unlimited sampling: Theory, algorithms and experiments
D Florescu, F Krahmer, A Bhandari
IEEE Transactions on Signal Processing 70, 616-630, 2022
312022
Comparing machine learning models to choose the variable ordering for cylindrical algebraic decomposition
M England, D Florescu
Intelligent Computer Mathematics: 12th International Conference, CICM 2019 …, 2019
242019
Algorithmically generating new algebraic features of polynomial systems for machine learning
D Florescu, M England
arXiv preprint arXiv:1906.01455, 2019
192019
A novel reconstruction framework for time-encoded signals with integrate-and-fire neurons
D Florescu, D Coca
Neural computation 27 (9), 1872-1898, 2015
192015
Event-driven modulo sampling
D Florescu, F Krahmer, A Bhandari
ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and …, 2021
152021
Unlimited sampling with local averages
D Florescu, A Bhandari
ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and …, 2022
142022
The fruit fly brain observatory: from structure to function
NH Ukani, CH Yeh, A Tomkins, Y Zhou, D Florescu, CL Ortiz, YC Huang, ...
BioRxiv, 580290, 2019
142019
Improved cross-validation for classifiers that make algorithmic choices to minimise runtime without compromising output correctness
D Florescu, M England
Mathematical Aspects of Computer and Information Sciences: 8th International …, 2020
112020
Time Encoding via Unlimited Sampling: Theory, Algorithms and Hardware Validation
D Florescu, A Bhandari
IEEE Transactions on Signal Processing 70, 4912-4924, 2022
92022
Unlimited Sampling via Generalized Thresholding
D Florescu, A Bhandari
2022 IEEE International Symposium on Information Theory (ISIT), 1606-1611, 2022
92022
Modulo Event-Driven Sampling: System Identification and Hardware Experiments
D Florescu, A Bhandari
ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and …, 2022
92022
Learning with precise spike times: A new decoding algorithm for liquid state machines
D Florescu, D Coca
Neural computation 31 (9), 1825-1852, 2019
82019
A machine learning based software pipeline to pick the variable ordering for algorithms with polynomial inputs
D Florescu, M England
Mathematical Software–ICMS 2020: 7th International Conference, Braunschweig …, 2020
72020
Unlimited Sampling of Bandpass Signals: Computational Demodulation via Undersampling
G Shtendel, D Florescu, A Bhandari
IEEE Transactions on Signal Processing, 2023
62023
Unlimited Sampling with Hysteresis
D Florescu, F Krahmer, A Bhandari
2021 55th Asilomar Conference on Signals, Systems, and Computers, 831-835, 2021
62021
Identification of linear and nonlinear sensory processing circuits from spiking neuron data
D Florescu, D Coca
Neural computation 30 (3), 670-707, 2018
52018
Reconstruction, identification and implementation methods for spiking neural circuits
D Florescu
Springer, 2017
42017
NeuroNLP: a natural language portal for aggregated fruit fly brain data
NH Ukani, A Tomkins, CH Yeh, W Bruning, AL Fenichel, Y Zhou, ...
bioRxiv, 092429, 2016
42016
26th annual computational neuroscience meeting (CNS* 2017): Part 3
AJH Newton, AH Seidenstein, RA McDougal, A Pérez-Cervera, G Huguet, ...
BMC Neuroscience 18, 1-82, 2017
32017
A Generalized Approach for Recovering Time Encoded Signals with Finite Rate of Innovation
D Florescu
arXiv preprint arXiv:2309.10223, 2023
22023
系统目前无法执行此操作,请稍后再试。
文章 1–20