关注
Marcos Netto
标题
引用次数
引用次数
年份
Power system dynamic state estimation: Motivations, definitions, methodologies, and future work
J Zhao, A Gómez-Expósito, M Netto, L Mili, A Abur, V Terzija, I Kamwa, ...
IEEE Transactions on Power Systems 34 (4), 3188-3198, 2019
6262019
A robust iterated extended Kalman filter for power system dynamic state estimation
J Zhao, M Netto, L Mili
IEEE transactions on power systems 32 (4), 3205-3216, 2016
4452016
Roles of dynamic state estimation in power system modeling, monitoring and operation
J Zhao, M Netto, Z Huang, SS Yu, A Gómez-Expósito, S Wang, I Kamwa, ...
IEEE Transactions on Power Systems 36 (3), 2462-2472, 2020
1702020
Power system inertia estimation: Review of methods and the impacts of converter-interfaced generations
B Tan, J Zhao, M Netto, V Krishnan, V Terzija, Y Zhang
International Journal of Electrical Power & Energy Systems 134, 107362, 2022
1312022
A robust data-driven Koopman Kalman filter for power systems dynamic state estimation
M Netto, L Mili
IEEE Transactions on Power Systems 33 (6), 7228-7237, 2018
1242018
Data-driven participation factors for nonlinear systems based on Koopman mode decomposition
M Netto, Y Susuki, L Mili
IEEE Control Systems Letters 3 (1), 198-203, 2018
522018
A robust extended Kalman filter for power system dynamic state estimation using PMU measurements
M Netto, J Zhao, L Mili
2016 IEEE Power and Energy Society General Meeting (PESGM), 1-5, 2016
452016
On Analytical Construction of Observable Functions in Extended Dynamic Mode Decomposition for Nonlinear Estimation and Prediction
M Netto, Y Susuki, V Krishnan, Y Zhang
IEEE Control Systems Letters 5 (6), 1868-1873, 2021
392021
Robust data filtering for estimating electromechanical modes of oscillation via the multichannel prony method
M Netto, L Mili
IEEE Transactions on Power Systems 33 (4), 4134-4143, 2017
392017
A robust prony method for power system electromechanical modes identification
M Netto, L Mili
2017 IEEE Power & Energy Society General Meeting, 1-5, 2017
342017
Robust Koopman operator-based Kalman filter for power systems dynamic state estimation
M Netto, L Mili
2018 IEEE Power & Energy Society General Meeting (PESGM), 1-5, 2018
232018
State-of-the-art of data collection, analytics, and future needs of transmission utilities worldwide to account for the continuous growth of sensing data
FRS Sevilla, Y Liu, E Barocio, P Korba, M Andrade, F Bellizio, J Bos, ...
International Journal of Electrical Power & Energy Systems 137, 107772, 2022
222022
Robust Dynamic Mode Decomposition
AH Abolmasoumi, M Netto, L Mili
IEEE Access 10, 65473-65484, 2022
142022
Robust identification, estimation, and control of electric power systems using the Koopman operator-theoretic framework
M Netto
Virginia Tech, 2019
122019
A hybrid framework combining model-based and data-driven methods for hierarchical decentralized robust dynamic state estimation
M Netto, V Krishnan, L Mili, Y Susuki, Y Zhang
2019 IEEE Power & Energy Society General Meeting (PESGM), 1-5, 2019
112019
Propagating Parameter Uncertainty in Power System Nonlinear Dynamic Simulations Using a Koopman Operator-Based Surrogate Model
Y Xu, M Netto, L Mili
IEEE Transactions on Power Systems 37 (4), 3157-3160, 2022
92022
Automated construction of clear-sky dictionary from all-sky imager data
P Shaffery, A Habte, M Netto, A Andreas, V Krishnan
Solar Energy 212, 73-83, 2020
82020
Measurement placement in electric power transmission and distribution grids: Review of concepts, methods, and research needs
M Netto, V Krishnan, Y Zhang, L Mili
IET Generation, Transmission & Distribution 16 (5), 805-838, 2022
72022
A general decentralized dynamic state estimation with synchronous generator magnetic saturation
B Tan, J Zhao, M Netto
IEEE Transactions on Power Systems 38 (1), 960-963, 2022
42022
Power system dynamic state and parameter estimation-transition to power electronics-dominated clean energy systems
J Zhao
IEEE PES Task Force on Power System Dynamic State and Parameter Estimation, 2021
42021
系统目前无法执行此操作,请稍后再试。
文章 1–20