Compositional visual generation with composable diffusion models N Liu, S Li, Y Du, A Torralba, JB Tenenbaum ECCV 2022, 2022 | 353 | 2022 |
Learning to compose visual relations N Liu, S Li, Y Du, JB Tenenbaum, A Torralba NeurIPS 2021, 2021 | 71* | 2021 |
Unsupervised compositional concepts discovery with text-to-image generative models N Liu, Y Du, S Li, JB Tenenbaum, A Torralba ICCV 2023, 2023 | 23* | 2023 |
FIBER: fill-in-the-blanks as a challenging video understanding evaluation framework S Castro, R Wang, P Huang, I Stewart, O Ignat, N Liu, JC Stroud, ... ACL 2022, 2022 | 19* | 2022 |
Sensor adversarial traits: analyzing robustness of 3d object detection sensor fusion models W Park, N Liu, QA Chen, ZM Mao ICIP 2021, 2021 | 14 | 2021 |
Cleaning uncertain data with crowdsourcing-a general model with diverse accuracy rates C Zhang, H Zhang, W Xie, N Liu, Q Li, D Jiang, P Lin, K Wu, L Chen IEEE Transactions on Knowledge and Data Engineering, 2020 | 4 | 2020 |
Where to: crowd-aided path selection by selective bayesian network C Zhang, H Zhang, W Xie, N Liu, K Wu, L Chen IEEE Transactions on Knowledge and Data Engineering, 2021 | 3 | 2021 |
Compositional image decomposition with diffusion models J Su, N Liu, Y Wang, JB Tenenbaum, Y Du ICML 2024, 2024 | 2* | 2024 |
M&M VTO: multi-garment virtual try-on and editing L Zhu, Y Li, N Liu, H Peng, D Yang, I Kemelmacher-Shlizerman CVPR 2024, 2024 | | 2024 |
Compositional visual generation with energy-based modeling N Liu University of Illinois at Urbana-Champaign, 2023 | | 2023 |