关注
T. Konstantin Rusch
T. Konstantin Rusch
在 mit.edu 的电子邮件经过验证 - 首页
标题
引用次数
引用次数
年份
A survey on oversmoothing in graph neural networks
TK Rusch, MM Bronstein, S Mishra
arXiv preprint arXiv:2303.10993, 2023
1422023
Graph-coupled oscillator networks
TK Rusch, B Chamberlain, J Rowbottom, S Mishra, M Bronstein
International Conference on Machine Learning, 18888-18909, 2022
1002022
Coupled Oscillatory Recurrent Neural Network (coRNN): An accurate and (gradient) stable architecture for learning long time dependencies
TK Rusch, S Mishra
9th International Conference on Learning Representations (ICLR), 2021
912021
Unicornn: A recurrent model for learning very long time dependencies
TK Rusch, S Mishra
International Conference on Machine Learning, 9168-9178, 2021
692021
Enhancing accuracy of deep learning algorithms by training with low-discrepancy sequences
S Mishra, TK Rusch
SIAM Journal on Numerical Analysis 59 (3), 1811-1834, 2021
612021
Long Expressive Memory for Sequence Modeling
TK Rusch, S Mishra, NB Erichson, MW Mahoney
10th International Conference on Learning Representations (ICLR), 2022
422022
Gradient Gating for Deep Multi-Rate Learning on Graphs
TK Rusch, BP Chamberlain, MW Mahoney, MM Bronstein, S Mishra
11th International Conference on Learning Representations (ICLR), 2023
382023
How does over-squashing affect the power of GNNs?
F Di Giovanni*, TK Rusch*, MM Bronstein, A Deac, M Lackenby, S Mishra, ...
Transactions on Machine Learning Research, 2024
25*2024
Higher-order quasi-Monte Carlo training of deep neural networks
M Longo, S Mishra, TK Rusch, C Schwab
SIAM Journal on Scientific Computing 43 (6), A3938-A3966, 2021
212021
A survey on oversmoothing in graph neural networks. arXiv
TK Rusch, MM Bronstein, S Mishra
arXiv preprint arXiv:2303.10993, 2023
11*2023
Multi-Scale Message Passing Neural PDE Solvers
L Equer, TK Rusch, S Mishra
ICLR 2023 Workshop on Physics for Machine Learning, 2023
102023
Neural oscillators are universal
S Lanthaler, TK Rusch, S Mishra
Advances in Neural Information Processing Systems 36, 2024
82024
Reproducing Existing Nacelle Geometries With the Free-Form Deformation Parametrization
K Rusch, M Siggel, RG Becker
Turbo Expo: Power for Land, Sea, and Air 51029, V02DT46A015, 2018
12018
Message-Passing Monte Carlo: Generating low-discrepancy point sets via Graph Neural Networks
TK Rusch, N Kirk, MM Bronstein, C Lemieux, D Rus
arXiv preprint arXiv:2405.15059, 2024
2024
Physics-inspired Machine Learning
TK Rusch
ETH Zurich, 2023
2023
系统目前无法执行此操作,请稍后再试。
文章 1–15