The GGL variational principle for constrained mechanical systems PL Kinon, P Betsch, S Schneider Multibody System Dynamics 57 (3-4), 211-236, 2023 | 9 | 2023 |
Structure-preserving integrators based on a new variational principle for constrained mechanical systems PL Kinon, P Betsch, S Schneider Nonlinear Dynamics 111 (15), 14231-14261, 2023 | 7 | 2023 |
Discrete nonlinear elastodynamics in a port‐Hamiltonian framework PL Kinon, T Thoma, P Betsch, P Kotyczka PAMM 23 (3), e202300144, 2023 | 4 | 2023 |
Port-Hamiltonian formulation and structure-preserving discretization of hyperelastic strings PL Kinon, T Thoma, P Betsch, P Kotyczka arXiv preprint arXiv:2304.10957, 2023 | 4 | 2023 |
Mechkit: A continuum mechanics toolkit in Python JK Bauer, PL Kinon, J Hund, L Latussek, N Meyer, T Böhlke | 3 | 2022 |
Energy-consistent integration of mechanical systems based on Livens principle PL Kinon, P Betsch arXiv preprint arXiv:2312.02825, 2023 | 2 | 2023 |
Evaluation of a decomposition-based interpolation method for fourth-order fiber-orientation tensors: An eigensystem approach JK Bauer, C Krauß, J Blarr, PL Kinon, L Kärger, T Böhlke Mathematics and Mechanics of Solids, 10812865241241002, 2024 | 1 | 2024 |
Conserving integration of multibody systems with singular and non-constant mass matrix including quaternion-based rigid body dynamics PL Kinon, P Betsch Multibody System Dynamics, 1-38, 2024 | | 2024 |
Structure‐preserving integrators for constrained mechanical systems in the framework of the GGL principle PL Kinon, P Betsch PAMM 22 (1), e202200006, 2023 | | 2023 |
Generalized Maxwell viscoelasticity for geometrically exact strings: Nonlinear port-Hamiltonian formulation and structure-preserving discretization PL Kinon, T Thoma, P Betsch, P Kotyczka | | |