关注
Jinghua Liu
Jinghua Liu
Department of Computer Science and Technology, Huaqiao University, Xiamen.
在 hqu.edu.cn 的电子邮件经过验证
标题
引用次数
引用次数
年份
Multi-label feature selection based on max-dependency and min-redundancy
Y Lin, Q Hu, J Liu, J Duan
Neurocomputing 168, 92-103, 2015
2542015
Streaming feature selection for multilabel learning based on fuzzy mutual information
Y Lin, Q Hu, J Liu, J Li, X Wu
IEEE Transactions on Fuzzy Systems 25 (6), 1491-1507, 2017
1762017
Multi-label feature selection based on neighborhood mutual information
Y Lin, Q Hu, J Liu, J Chen, J Duan
Applied soft computing 38, 244-256, 2016
1682016
Online multi-label streaming feature selection based on neighborhood rough set
J Liu, Y Lin, Y Li, W Weng, S Wu
Pattern Recognition 84, 273-287, 2018
1432018
An effective collaborative filtering algorithm based on user preference clustering
J Zhang, Y Lin, M Lin, J Liu
Applied Intelligence 45, 230-240, 2016
1212016
Feature selection based on quality of information
J Liu, Y Lin, M Lin, S Wu, J Zhang
Neurocomputing 225, 11-22, 2017
852017
Feature selection for multi-label learning based on kernelized fuzzy rough sets
Y Li, Y Lin, J Liu, W Weng, Z Shi, S Wu
Neurocomputing 318, 271-286, 2018
632018
Multi-label feature selection based on label correlations and feature redundancy
Y Fan, B Chen, W Huang, J Liu, W Weng, W Lan
Knowledge-Based Systems 241, 108256, 2022
582022
Manifold learning with structured subspace for multi-label feature selection
Y Fan, J Liu, P Liu, Y Du, W Lan, S Wu
Pattern Recognition 120, 108169, 2021
582021
Online multi-label group feature selection
J Liu, Y Lin, S Wu, C Wang
Knowledge-Based Systems 143, 42-57, 2018
582018
Group-preserving label-specific feature selection for multi-label learning
J Zhang, H Wu, M Jiang, J Liu, S Li, Y Tang, J Long
Expert Systems with Applications 213, 118861, 2023
482023
Feature selection for multi-label learning with streaming label
J Liu, Y Li, W Weng, J Zhang, B Chen, S Wu
Neurocomputing 387, 268-278, 2020
462020
Different classes’ ratio fuzzy rough set based robust feature selection
Y Li, S Wu, Y Lin, J Liu
Knowledge-Based Systems 120, 74-86, 2017
462017
MULFE: multi-label learning via label-specific feature space ensemble
Y Lin, Q Hu, J Liu, X Zhu, X Wu
ACM Transactions on Knowledge Discovery from Data (TKDD) 16 (1), 1-24, 2021
412021
Fuzzy mutual information-based multilabel feature selection with label dependency and streaming labels
J Liu, Y Lin, W Ding, H Zhang, J Du
IEEE Transactions on Fuzzy Systems 31 (1), 77-91, 2022
372022
Multi-label feature selection with constraint regression and adaptive spectral graph
Y Fan, J Liu, W Weng, B Chen, Y Chen, S Wu
Knowledge-Based Systems 212, 106621, 2021
322021
Non-sparse label specific features selection for multi-label classification
W Weng, YN Chen, CL Chen, SX Wu, JH Liu
Neurocomputing 377, 85-94, 2020
312020
Feature selection for multi-label learning with missing labels
C Wang, Y Lin, J Liu
Applied Intelligence 49, 3027-3042, 2019
312019
Multi-label feature selection based on label distribution and neighborhood rough set
J Liu, Y Lin, W Ding, H Zhang, C Wang, J Du
Neurocomputing 524, 142-157, 2023
302023
ASFS: A novel streaming feature selection for multi-label data based on neighborhood rough set
JZ Jinghua Liu*, Yaojin Lin, Jixiang Du, Hongbo Zhang, Ziyi Chen
Applied Intelligence 1 (1), 2022
30*2022
系统目前无法执行此操作,请稍后再试。
文章 1–20