关注
Marc-Andre Schulz
Marc-Andre Schulz
在 charite.de 的电子邮件经过验证
标题
引用次数
引用次数
年份
Different scaling of linear models and deep learning in UKBiobank brain images versus machine-learning datasets
MA Schulz, BTT Yeo, JT Vogelstein, J Mourao-Miranada, JN Kather, ...
Nature communications 11 (1), 1-15, 2020
2202020
Analysing humanly generated random number sequences: a pattern-based approach
MA Schulz, B Schmalbach, P Brugger, K Witt
PloS one 7 (7), e41531, 2012
522012
Promises and pitfalls of deep neural networks in neuroimaging-based psychiatric research
F Eitel, MA Schulz, M Seiler, H Walter, K Ritter
Experimental Neurology 339, 113608, 2021
352021
Deep learning for brains?: Different linear and nonlinear scaling in UK Biobank brain images vs. machine-learning datasets
MA Schulz, BTT Yeo, JT Vogelstein, J Mourao-Miranada, JN Kather, ...
BioRxiv, 757054, 2019
352019
Inferring disease subtypes from clusters in explanation space
MA Schulz, M Chapman-Rounds, M Verma, D Bzdok, K Georgatzis
Scientific Reports 10 (1), 12900, 2020
322020
Performance reserves in brain-imaging-based phenotype prediction
MA Schulz, D Bzdok, S Haufe, JD Haynes, K Ritter
Cell Reports 43 (1), 2024
282024
FIMAP: Feature importance by minimal adversarial perturbation
M Chapman-Rounds, U Bhatt, E Pazos, MA Schulz, K Georgatzis
Proceedings of the AAAI Conference on Artificial Intelligence 35 (13), 11433 …, 2021
172021
A cognitive fingerprint in human random number generation
MA Schulz, S Baier, B Timmermann, D Bzdok, K Witt
Scientific reports 11 (1), 1-7, 2021
102021
EMAP: Explanation by minimal adversarial perturbation
M Chapman-Rounds, MA Schulz, E Pazos, K Georgatzis
arXiv preprint arXiv:1912.00872, 2019
92019
On utilizing uncertainty information in template‐based EEG‐fMRI ballistocardiogram artifact removal
MA Schulz, C Regenbogen, C Moessnang, I Neuner, A Finkelmeyer, ...
Psychophysiology 52 (6), 857-863, 2015
42015
Emerging shifts in neuroimaging data analysis in the era of “big data”
D Bzdok, MA Schulz, M Lindquist
Personalized psychiatry: big data analytics in mental health, 99-118, 2019
32019
Similar neural pathways link psychological stress and brain-age in health and multiple sclerosis
MA Schulz, S Hetzer, F Eitel, S Asseyer, L Meyer-Arndt, T Schmitz-Hübsch, ...
Iscience 26 (9), 2023
2*2023
Label scarcity in biomedicine: Data-rich latent factor discovery enhances phenotype prediction
MA Schulz, B Thirion, A Gramfort, G Varoquaux, D Bzdok
arXiv preprint arXiv:2110.06135, 2021
12021
TLIMB-a transfer learning framework for image analysis of the brain
MA Schulz, JP Albrecht, A Yilmaz, A Koch, D Kainmüller, U Leser, K Ritter
CEUR Workshop Proceedings, 1-6, 2024
2024
Inferring disease subtypes from clusters in explanation space (vol 14, 6223, 2024)
MA Schulz, M Chapman-Rounds, M Verma, D Bzdok, K Georgatzis
SCIENTIFIC REPORTS 14 (1), 2024
2024
Machine Learning in Neuroimaging Psychiatry: Scaling Behavior, Constraints, and Limitations
MA Schulz
Technische Universität Berlin, 2024
2024
Beyond Accuracy: Refining Brain-Age Models for Enhanced Disease Detection
MA Schulz, NT Siegel, K Ritter
bioRxiv, 2024.03. 28.587212, 2024
2024
Author Correction: Inferring disease subtypes from clusters in explanation space
MA Schulz, M Chapman-Rounds, M Verma, D Bzdok, K Georgatzis
Scientific Reports 14, 2024
2024
The Link Between Psychological Stress and Brain Age is Mediated by Similar Neural Pathways in both Healthy Individuals and People with Multiple Sclerosis
MA Schulz, F Eitel, S Asseyer, L Meyer-Arndt, T Schmitz-Huebsch, ...
MULTIPLE SCLEROSIS JOURNAL 29, 541-542, 2023
2023
Identifying confounders in deep-learning-based model predictions using DeepRepViz
RP Rane, JH Kim, A Umesha, D Stark, MA Schulz, K Ritter
arXiv preprint arXiv:2309.15551, 2023
2023
系统目前无法执行此操作,请稍后再试。
文章 1–20