Improving angular speed uniformity by reparameterization J Yang, D Wang, H Hong Computer Aided Geometric Design 30 (7), 636-652, 2013 | 14 | 2013 |
A condition for multiplicity structure of univariate polynomials H Hong, J Yang Journal of Symbolic Computation 104, 523-538, 2021 | 9 | 2021 |
多项式代数 王东明, 应用数学 高等教育出版社, 2011 | 9 | 2011 |
Improving Angular Speed Uniformity by C 1 Piecewise Reparameterization J Yang, D Wang, H Hong Automated Deduction in Geometry: 9th International Workshop, ADG 2012 …, 2013 | 7 | 2013 |
Subresultant of several univariate polynomials H Hong, J Yang arXiv preprint arXiv:2112.15370, 2021 | 6 | 2021 |
Improving Angular Speed Uniformity by Optimal C 0 Piecewise Reparameterization J Yang, D Wang, H Hong Computer Algebra in Scientific Computing: 14th International Workshop, CASC …, 2012 | 6 | 2012 |
Computing greatest common divisor of several parametric univariate polynomials via generalized subresultant polynomials H Hong, J Yang arXiv preprint arXiv:2401.00408, 2023 | 5 | 2023 |
Generalized polynomial complementarity problems over a polyhedral cone T Shang, J Yang, G Tang Journal of Optimization Theory and Applications 192 (2), 443-483, 2022 | 5 | 2022 |
A framework for improving uniformity of parameterizations of curves H Hong, DM Wang, J Yang Science China Information Sciences 56, 1-22, 2013 | 4 | 2013 |
Generalized Companion Subresultants of Several Univariate Polynomials in Newton Basis W Wang, J Yang arXiv preprint arXiv:2212.03422, 2022 | 3 | 2022 |
ImUp: a Maple package for uniformity-improved reparameterization of plane curves J Yang, D Wang, H Hong Computer Mathematics: 9th Asian Symposium (ASCM2009), Fukuoka, December 2009 …, 2014 | 3 | 2014 |
Jacobi stability analysis for systems of ODEs using symbolic computation B Huang, D Wang, J Yang Proceedings of the 2024 International Symposium on Symbolic and Algebraic …, 2024 | 2 | 2024 |
B\'ezout Subresultants for Univariate Polynomials in General Basis J Yang, W Yang arXiv preprint arXiv:2305.03906, 2023 | 2 | 2023 |
The Second Discriminant of a Univariate Polynomial D Wang, J Yang Science China: Mathematics 64 (6), 1157–1180, 2021 | 2 | 2021 |
Subresultants of several univariate polynomials in Newton basis W Wang, J Yang Journal of Symbolic Computation 128, 102378, 2025 | 1 | 2025 |
A Basis-preserving Algorithm for Computing the Bezout Matrix of Newton Polynomials J Yang, W Yang arXiv preprint arXiv:2404.18117, 2024 | 1 | 2024 |
On -symmetric polynomials J Yang, CK Yap Journal of Algebra and Its Applications 21 (12), 2250233, 2022 | 1 | 2022 |
The D-plus discriminant and complexity of root clustering J Yang, CK Yap arXiv preprint arXiv:2105.03856, 2021 | 1 | 2021 |
On -Symmetric Polynomials and D-Plus J Yang, CK Yap International Congress on Mathematical Software, 482-491, 2018 | 1 | 2018 |
Autocorrelation via runs IS Kotsireas, J Yang Artificial Intelligence and Symbolic Computation: 13th International …, 2018 | 1 | 2018 |