关注
Satoshi Kozawa
Satoshi Kozawa
在 atr.jp 的电子邮件经过验证
标题
引用次数
引用次数
年份
Conversion of a signal into forces for axon outgrowth through Pak1-mediated shootin1 phosphorylation
M Toriyama, S Kozawa, Y Sakumura, N Inagaki
Current Biology 23 (6), 529-534, 2013
1022013
Shootin1–cortactin interaction mediates signal–force transduction for axon outgrowth
Y Kubo, K Baba, M Toriyama, T Minegishi, T Sugiura, S Kozawa, K Ikeda, ...
Journal of Cell Biology 210 (4), 663-676, 2015
732015
The body-wide transcriptome landscape of disease models
S Kozawa, R Ueda, K Urayama, F Sagawa, S Endo, K Shiizaki, H Kurosu, ...
IScience 2, 238-268, 2018
172018
Predicting human clinical outcomes using mouse multi-organ transcriptome
S Kozawa, F Sagawa, S Endo, GM De Almeida, Y Mitsuishi, TN Sato
Iscience 23 (2), 2020
82020
Re-evaluating the functional landscape of the cardiovascular system during development
N Takada, M Omae, F Sagawa, NC Chi, S Endo, S Kozawa, TN Sato
Biology Open 6 (11), 1756-1770, 2017
72017
Real-time prediction of cell division timing in developing zebrafish embryo
S Kozawa, T Akanuma, T Sato, YD Sato, K Ikeda, TN Sato
Scientific reports 6 (1), 32962, 2016
72016
Subsurface imaging for anti-personal mine detection by Bayesian super-resolution with a smooth-gap prior
S Kozawa, T Takenouchi, K Ikeda
Artificial Life and Robotics 16, 478-481, 2012
42012
Subsurface imaging by Bayesian super-resolution for anti-personal mine detection using ground penetrating radar
S Kozawa, T Takenouchi, S Ishii
Journal of Signal Processing 14 (4), 297-300, 2010
22010
Latent disease similarities and therapeutic repurposing possibilities uncovered by multi-modal generative topic modeling of human diseases
S Kozawa, H Yokoyama, K Urayama, K Tejima, H Doi, S Takagi, TN Sato
Bioinformatics Advances 3 (1), vbad047, 2023
12023
Application of augmented topic model to predicting biomarkers and therapeutic targets using multiple human disease-omics datasets
S Kozawa, K Urayama, K Tejima, H Doi, H Yokoyama, Y Ueno, TN Sato
bioRxiv, 2021.05. 18.444550, 2021
12021
Bayesian Cell Force Estimation Considering Force Directions
S Kozawa, Y Sakumura, M Toriyama, N Inagaki, K Ikeda
Neural Processing Letters 41, 191-200, 2015
12015
An estimation of cell forces with hierarchical bayes approach considering cell morphology
S Kozawa, Y Sakumura, M Toriyama, N Inagaki, K Ikeda
Neural Information Processing: 19th International Conference, ICONIP 2012 …, 2012
12012
Latent inter-organ mechanism of idiopathic pulmonary fibrosis unveiled by a generative computational approach
S Kozawa, K Tejima, S Takagi, M Kuroda, M Nogami-Itoh, H Kitamura, ...
Scientific Reports 13 (1), 21981, 2023
2023
Bayesian traction force estimation using cell boundary-dependent force priors
R Fujikawa, C Okimura, S Kozawa, K Ikeda, N Inagaki, Y Iwadate, ...
Biophysical Journal 122 (23), 4542-4554, 2023
2023
On the complexity of tree edit distance with variables
T Akutsu, T Mori, N Nakamura, S Kozawa, Y Ueno, TN Sato
33rd International Symposium on Algorithms and Computation (ISAAC 2022) 248 …, 2022
2022
Tree Edit Distance with Variables. Measuring the Similarity between Mathematical Formulas
T Akutsu, T Mori, N Nakamura, S Kozawa, Y Ueno, TN Sato
arXiv preprint arXiv:2105.04802, 2021
2021
Body-wide landscape of cell type-specific total cellular transcriptome-size and its physiological significance
K Tejima, S Kozawa, TN Sato
bioRxiv, 2020.07. 05.188276, 2020
2020
Bayesian Cell Force Estimation Introducing Cell Shape Prior
R Fujikawa, S Kozawa, K Baba, N Inagaki, K Ikeda, Y Sakumura
Biophysical Journal 118 (3), 459a, 2020
2020
Diverse yet highly selective interorgan crosstalk mechanisms shape the bodywide transcriptome landscape
N Takada, M Omae, F Sagawa, NC Chi, S Endo, S Kozawa, TN Sato
bioRxiv, 102723, 2017
2017
系统目前无法执行此操作,请稍后再试。
文章 1–19