关注
Taichi Nakamura
标题
引用次数
引用次数
年份
Convolutional neural network based hierarchical autoencoder for nonlinear mode decomposition of fluid field data
K Fukami, T Nakamura, K Fukagata
Physics of Fluids 32 (9), 2020
1692020
Convolutional neural network and long short-term memory based reduced order surrogate for minimal turbulent channel flow
T Nakamura, K Fukami, K Hasegawa, Y Nabae, K Fukagata
Physics of Fluids 33 (2), 2021
1462021
Model order reduction with neural networks: Application to laminar and turbulent flows
K Fukami, K Hasegawa, T Nakamura, M Morimoto, K Fukagata
SN Computer Science 2, 1-16, 2021
642021
Supervised convolutional network for three-dimensional fluid data reconstruction from sectional flow fields with adaptive super-resolution assistance
M Matsuo, T Nakamura, M Morimoto, K Fukami, K Fukagata
arXiv preprint arXiv:2103.09020, 2021
312021
Inserting machine-learned virtual wall velocity for large-eddy simulation of turbulent channel flows
N Moriya, K Fukami, Y Nabae, M Morimoto, T Nakamura, K Fukagata
arXiv preprint arXiv:2106.09271, 2021
202021
Identifying key differences between linear stochastic estimation and neural networks for fluid flow regressions
T Nakamura, K Fukami, K Fukagata
Scientific reports 12 (1), 3726, 2022
192022
Robust training approach of neural networks for fluid flow state estimations
T Nakamura, K Fukagata
International Journal of Heat and Fluid Flow 96, 108997, 2022
132022
Comparison of linear regressions and neural networks for fluid flow problems assisted with error-curve analysis
T Nakamura, K Fukami, K Fukagata
arXiv e-prints, arXiv: 2105.00913, 2021
72021
Supervised convolutional networks for vol-umetric data enrichment from limited sec-tional data with adaptive super resolution
M Matsuo, K Fukami, T Nakamura, M Morimoto, K Fukagata
en. In, 5, 2021
22021
Extension of CNN-LSTM based reduced order surrogate for minimal turbulent channel flow
T Nakamura, K Fukami, K Hasegawa, Y Nabae, K Fukagata
arXiv e-prints, arXiv: 2010.13351, 2020
12020
CNN-AE/LSTM based turbulent flow forecast on low-dimensional latent space
T Nakamura, K Fukami, K Hasegawa, Y Nabae, K Fukagata
12020
Deep learning-based unsteady flow estimation: nonlinear convolution of wakes behind an oscillating cylinder
H CHIDA, T NAKAMURA, K ZHANG, K FUKAGATA
数値流体力学シンポジウム講演論文集 (CD-ROM) 35, 5-1, 2021
2021
機械学習を用いた乱流の状態推定: 入力ノイズに対するロバスト性
中村太一, 深見開, 深潟康二
日本機械学会関東支部総会講演会講演論文集 2021.27, 11C02, 2021
2021
非線形ダイナミカルシステムに対するニューラルネットワークを用いた異常検知
森本将生, 深見開, 中村太一, 深潟康二
日本機械学会関東支部総会講演会講演論文集 2021.27, 11C07, 2021
2021
Supervised machine learning for wall-modeling in large-eddy simulation of turbulent channel flow
N MORIYA, KAI FUKAMI, Y NABAE, M MORIMOTO, T NAKAMURA, ...
数値流体力学シンポジウム講演論文集 (CD-ROM) 34, 10-2, 2020
2020
階層型 CNN オートエンコーダを用いた流れ場の非線形モードの抽出
中村太一, 深見開, 深潟康二
ながれ: 日本流体力学会誌= Nagare: journal of Japan Society of Fluid …, 2020
2020
Three-dimensional flow field reconstruction from two-dimensional sectional data using machine learning
M MATSUO, M MORIMOTO, T NAKAMURA, KAI FUKAMI, K FUKAGATA
数値流体力学シンポジウム講演論文集 (CD-ROM) 34, 6-4, 2020
2020
Extraction of nonlinear modes in fluid flows using a hierarchical convolutional neural network autoencoder
T NAKAMURA, KAI FUKAMI, K FUKAGATA
ながれ 39 (6), 316-319, 2020
2020
Convolutional neural network based wall modeling for large eddy simulation in a turbulent channel flow
N Moriya, K Fukami, Y Nabae, M Morimoto, T Nakamura, K Fukagata
APS Division of Fluid Dynamics Meeting Abstracts, R01. 019, 2020
2020
CLUES FOR NOISE ROBUSTNESS OF STATE ESTIMA-TION: ERROR-CURVE QUEST OF NEURAL NETWORK AND LINEAR REGRESSION
T Nakamura, K Fukami, K Fukagata
系统目前无法执行此操作,请稍后再试。
文章 1–20