关注
Watshara Shoombuatong
Watshara Shoombuatong
Associate Professor of Bioinformatics, Mahidol University
在 mahidol.ac.th 的电子邮件经过验证
标题
引用次数
引用次数
年份
HLPpred-Fuse: improved and robust prediction of hemolytic peptide and its activity by fusing multiple feature representation
MM Hasan, N Schaduangrat, S Basith, G Lee, W Shoombuatong, ...
Bioinformatics 36 (11), 3350-3356, 2020
1672020
ACPred: a computational tool for the prediction and analysis of anticancer peptides
N Schaduangrat, C Nantasenamat, V Prachayasittikul, W Shoombuatong
Molecules 24 (10), 1973, 2019
1572019
BERT4Bitter: a bidirectional encoder representations from transformers (BERT)-based model for improving the prediction of bitter peptides
P Charoenkwan, C Nantasenamat, MM Hasan, B Manavalan, ...
Bioinformatics 37 (17), 2556-2562, 2021
1192021
Unraveling the bioactivity of anticancer peptides as deduced from machine learning
W Shoombuatong, N Schaduangrat, C Nantasenamat
EXCLI journal 17, 734, 2018
1182018
StackIL6: a stacking ensemble model for improving the prediction of IL-6 inducing peptides
P Charoenkwan, W Chiangjong, C Nantasenamat, MM Hasan, ...
Briefings in bioinformatics 22 (6), bbab172, 2021
1062021
Meta-iAVP: a sequence-based meta-predictor for improving the prediction of antiviral peptides using effective feature representation
N Schaduangrat, C Nantasenamat, V Prachayasittikul, W Shoombuatong
International journal of molecular sciences 20 (22), 5743, 2019
1012019
iUmami-SCM: a novel sequence-based predictor for prediction and analysis of umami peptides using a scoring card method with propensity scores of dipeptides
P Charoenkwan, J Yana, C Nantasenamat, MM Hasan, W Shoombuatong
Journal of Chemical Information and Modeling 60 (12), 6666-6678, 2020
982020
HemoPred: a web server for predicting the hemolytic activity of peptides
TS Win, AA Malik, V Prachayasittikul, JE S Wikberg, C Nantasenamat, ...
Future medicinal chemistry 9 (3), 275-291, 2017
962017
iBitter-SCM: Identification and characterization of bitter peptides using a scoring card method with propensity scores of dipeptides
P Charoenkwan, J Yana, N Schaduangrat, C Nantasenamat, MM Hasan, ...
Genomics 112 (4), 2813-2822, 2020
912020
Computer-aided drug design of bioactive natural products
V Prachayasittikul, A Worachartcheewan, W Shoombuatong, ...
Current Topics in Medicinal Chemistry 15 (18), 1780-1800, 2015
892015
SCMCRYS: predicting protein crystallization using an ensemble scoring card method with estimating propensity scores of P-collocated amino acid pairs
P Charoenkwan, W Shoombuatong, HC Lee, J Chaijaruwanich, ...
PloS one 8 (9), e72368, 2013
862013
iDPPIV-SCM: a sequence-based predictor for identifying and analyzing dipeptidyl peptidase IV (DPP-IV) inhibitory peptides using a scoring card method
P Charoenkwan, S Kanthawong, C Nantasenamat, MM Hasan, ...
Journal of proteome research 19 (10), 4125-4136, 2020
752020
i6mA-Fuse: improved and robust prediction of DNA 6 mA sites in the Rosaceae genome by fusing multiple feature representation
MM Hasan, B Manavalan, W Shoombuatong, MS Khatun, H Kurata
Plant molecular biology 103, 225-234, 2020
722020
Probing the origins of human acetylcholinesterase inhibition via QSAR modeling and molecular docking
S Simeon, N Anuwongcharoen, W Shoombuatong, AA Malik, ...
PeerJ 4, e2322, 2016
682016
THPep: A machine learning-based approach for predicting tumor homing peptides
W Shoombuatong, N Schaduangrat, R Pratiwi, C Nantasenamat
Computational biology and chemistry 80, 441-451, 2019
672019
NeuroPred-FRL: an interpretable prediction model for identifying neuropeptide using feature representation learning
MM Hasan, MA Alam, W Shoombuatong, HW Deng, B Manavalan, ...
Briefings in Bioinformatics 22 (6), bbab167, 2021
642021
Improved prediction and characterization of anticancer activities of peptides using a novel flexible scoring card method
P Charoenkwan, W Chiangjong, VS Lee, C Nantasenamat, MM Hasan, ...
Scientific reports 11 (1), 3017, 2021
632021
i4mC-Mouse: Improved identification of DNA N4-methylcytosine sites in the mouse genome using multiple encoding schemes
MM Hasan, B Manavalan, W Shoombuatong, MS Khatun, H Kurata
Computational and structural biotechnology journal 18, 906-912, 2020
632020
Predicting metabolic syndrome using the random forest method
A Worachartcheewan, W Shoombuatong, P Pidetcha, W Nopnithipat, ...
The Scientific World Journal 2015 (1), 581501, 2015
632015
Meta-iPVP: a sequence-based meta-predictor for improving the prediction of phage virion proteins using effective feature representation
P Charoenkwan, C Nantasenamat, MM Hasan, W Shoombuatong
Journal of Computer-Aided Molecular Design 34 (10), 1105-1116, 2020
612020
系统目前无法执行此操作,请稍后再试。
文章 1–20