Explainable machine learning for scientific insights and discoveries R Roscher, B Bohn, MF Duarte, J Garcke Ieee Access 8, 42200-42216, 2020 | 860 | 2020 |
Informed machine learning–a taxonomy and survey of integrating prior knowledge into learning systems L Von Rueden, S Mayer, K Beckh, B Georgiev, S Giesselbach, R Heese, ... IEEE Transactions on Knowledge and Data Engineering 35 (1), 614-633, 2021 | 764 | 2021 |
Sparse grids in a nutshell J Garcke Sparse grids and applications, 57-80, 2013 | 205* | 2013 |
Combining machine learning and simulation to a hybrid modelling approach: Current and future directions L von Rueden, S Mayer, R Sifa, C Bauckhage, J Garcke Advances in Intelligent Data Analysis XVIII: 18th International Symposium on …, 2020 | 195 | 2020 |
Data mining with sparse grids J Garcke, M Griebel, M Thess Computing 67, 225-253, 2001 | 185 | 2001 |
Multivariate regression and machine learning with sums of separable functions G Beylkin, J Garcke, MJ Mohlenkamp SIAM Journal on Scientific Computing 31 (3), 1840-1857, 2009 | 140 | 2009 |
An adaptive sparse grid semi-Lagrangian scheme for first order Hamilton-Jacobi Bellman equations O Bokanowski, J Garcke, M Griebel, I Klompmaker Journal of Scientific Computing 55, 575-605, 2013 | 136 | 2013 |
The combination technique and some generalisations M Hegland, J Garcke, V Challis Linear Algebra and its Applications 420 (2-3), 249-275, 2007 | 117 | 2007 |
Analysis of car crash simulation data with nonlinear machine learning methods B Bohn, J Garcke, R Iza-Teran, A Paprotny, B Peherstorfer, ... Procedia Computer Science 18, 621-630, 2013 | 91 | 2013 |
On the computation of the eigenproblems of hydrogen and helium in strong magnetic and electric fields with the sparse grid combination technique J Garcke, M Griebel Journal of Computational Physics 165 (2), 694-716, 2000 | 82 | 2000 |
Importance weighted inductive transfer learning for regression J Garcke, T Vanck Machine Learning and Knowledge Discovery in Databases: European Conference …, 2014 | 79 | 2014 |
Sparse grids and applications J Garcke, M Griebel Springer Science & Business Media, 2012 | 79 | 2012 |
Classification with sparse grids using simplicial basis functions J Garcke, M Griebel Intelligent data analysis 6 (6), 483-502, 2002 | 71 | 2002 |
Suboptimal feedback control of PDEs by solving HJB equations on adaptive sparse grids J Garcke, A Kröner Journal of Scientific Computing 70, 1-28, 2017 | 62 | 2017 |
Maschinelles Lernen durch Funktionsrekonstruktion mit verallgemeinerten dünnen Gittern J Garcke Universitäts-und Landesbibliothek Bonn, 2004 | 59 | 2004 |
Regression with the optimised combination technique J Garcke Proceedings of the 23rd international conference on Machine learning, 321-328, 2006 | 51 | 2006 |
Approximating Gaussian Processes with H^2-Matrices S Börm, J Garcke European Conference on Machine Learning, 42-53, 2007 | 50 | 2007 |
A dimension adaptive sparse grid combination technique for machine learning J Garcke Anziam Journal 48, C725-C740, 2006 | 50 | 2006 |
Fitting multidimensional data using gradient penalties and the sparse grid combination technique J Garcke, M Hegland Computing 84, 1-25, 2009 | 44 | 2009 |
On the numerical solution of the chemical master equation with sums of rank one tensors M Hegland, J Garcke ANZIAM Journal 52, C628-C643, 2010 | 39 | 2010 |