High-dimensional and large-scale anomaly detection using a linear one-class SVM with deep learning SM Erfani, S Rajasegarar, S Karunasekera, C Leckie Pattern Recognition 58, 121-134, 2016 | 1236 | 2016 |
Non-intrusive load monitoring approaches for disaggregated energy sensing: A survey A Zoha, A Gluhak, MA Imran, S Rajasegarar Sensors 12 (12), 16838-16866, 2012 | 1184 | 2012 |
Anomaly detection in wireless sensor networks S Rajasegarar, C Leckie, M Palaniswami IEEE Wireless Communications 15 (4), 34-40, 2008 | 383 | 2008 |
Distributed anomaly detection in wireless sensor networks S Rajasegarar, C Leckie, M Palaniswami, JC Bezdek 2006 10th IEEE Singapore international conference on communication systems, 1-5, 2006 | 369 | 2006 |
Parking availability prediction for sensor-enabled car parks in smart cities Y Zheng, S Rajasegarar, C Leckie 2015 IEEE tenth international conference on intelligent sensors, sensor …, 2015 | 302 | 2015 |
Quarter sphere based distributed anomaly detection in wireless sensor networks S Rajasegarar, C Leckie, M Palaniswami, JC Bezdek 2007 IEEE International Conference on Communications, 3864-3869, 2007 | 256 | 2007 |
Centered hyperspherical and hyperellipsoidal one-class support vector machines for anomaly detection in sensor networks S Rajasegarar, C Leckie, JC Bezdek, M Palaniswami IEEE Transactions on Information Forensics and Security 5 (3), 518-533, 2010 | 186 | 2010 |
Labelled data collection for anomaly detection in wireless sensor networks S Suthaharan, M Alzahrani, S Rajasegarar, C Leckie, M Palaniswami 2010 sixth international conference on intelligent sensors, sensor networks …, 2010 | 162 | 2010 |
A Hybrid Approach to Clustering in Big Data D Kumar, JC Bezdek, M Palaniswami, S Rajasegarar, C Leckie, ... IEEE Transactions on Cybernetics, 2015 | 155* | 2015 |
Anomaly detection in wireless sensor networks in a non-stationary environment C O'Reilly, A Gluhak, MA Imran, S Rajasegarar IEEE Communications Surveys & Tutorials 16 (3), 1413-1432, 2014 | 142 | 2014 |
Fog-empowered anomaly detection in IoT using hyperellipsoidal clustering L Lyu, J Jin, S Rajasegarar, X He, M Palaniswami IEEE Internet of Things Journal 4 (5), 1174-1184, 2017 | 128 | 2017 |
Hyperspherical cluster based distributed anomaly detection in wireless sensor networks S Rajasegarar, C Leckie, M Palaniswami Journal of Parallel and Distributed Computing 74 (1), 1833-1847, 2014 | 126 | 2014 |
Clustering ellipses for anomaly detection M Moshtaghi, TC Havens, JC Bezdek, L Park, C Leckie, S Rajasegarar, ... Pattern Recognition 44 (1), 55-69, 2011 | 109 | 2011 |
Bus travel time prediction with real-time traffic information J Ma, J Chan, G Ristanoski, S Rajasegarar, C Leckie Transportation Research Part C: Emerging Technologies 105, 536-549, 2019 | 102 | 2019 |
Improving load forecasting based on deep learning and K-shape clustering F Fahiman, SM Erfani, S Rajasegarar, M Palaniswami, C Leckie 2017 international joint conference on neural networks (IJCNN), 4134-4141, 2017 | 97 | 2017 |
Elliptical anomalies in wireless sensor networks S Rajasegarar, JC Bezdek, C Leckie, M Palaniswami ACM Transactions on Sensor Networks (TOSN) 6 (1), 1-28, 2010 | 88 | 2010 |
Ensemble fuzzy clustering using cumulative aggregation on random projections P Rathore, JC Bezdek, SM Erfani, S Rajasegarar, M Palaniswami IEEE transactions on fuzzy systems 26 (3), 1510-1524, 2017 | 74 | 2017 |
A scalable framework for trajectory prediction P Rathore, D Kumar, S Rajasegarar, M Palaniswami, JC Bezdek IEEE Transactions on Intelligent Transportation Systems 20 (10), 3860-3874, 2019 | 73 | 2019 |
A rapid hybrid clustering algorithm for large volumes of high dimensional data P Rathore, D Kumar, JC Bezdek, S Rajasegarar, M Palaniswami IEEE Transactions on Knowledge and Data Engineering 31 (4), 641-654, 2018 | 71 | 2018 |
A visual-numeric approach to clustering and anomaly detection for trajectory data D Kumar, JC Bezdek, S Rajasegarar, C Leckie, M Palaniswami The Visual Computer 33, 265-281, 2017 | 71 | 2017 |