Pseudorandomness of Ring-LWE for any ring and modulus C Peikert, O Regev, N Stephens-Davidowitz STOC, 461-473, 2017 | 267 | 2017 |
Solving the Shortest Vector Problem in time using discrete Gaussian sampling D Aggarwal, D Dadush, O Regev, N Stephens-Davidowitz STOC, 733-742, 2015 | 201 | 2015 |
Cryptographic reverse firewalls I Mironov, N Stephens-Davidowitz Eurocrypt, 657-686, 2015 | 127 | 2015 |
Message transmission with reverse firewalls---secure communication on corrupted machines Y Dodis, I Mironov, N Stephens-Davidowitz CRYPTO, 2016 | 94 | 2016 |
Solving the Closest Vector Problem in time--The discrete Gaussian strikes again! D Aggarwal, D Dadush, N Stephens-Davidowitz FOCS, 563-582, 2015 | 94 | 2015 |
On the Closest Vector Problem with a distance guarantee D Dadush, O Regev, N Stephens-Davidowitz CCC, 98-109, 2014 | 59 | 2014 |
Implementing BP-obfuscation using graph-induced encoding S Halevi, T Halevi, V Shoup, N Stephens-Davidowitz CCS, 783-798, 2017 | 46 | 2017 |
Slide reduction, revisited---filling the gaps in SVP approximation D Aggarwal, J Li, PQ Nguyen, N Stephens-Davidowitz CRYPTO, 2020 | 45 | 2020 |
How to eat your entropy and have it too: Optimal recovery strategies for compromised RNGs Y Dodis, A Shamir, N Stephens-Davidowitz, D Wichs Algorithmica 79, 1196-1232, 2017 | 44 | 2017 |
Discrete Gaussian sampling reduces to CVP and SVP N Stephens-Davidowitz SODA, 1748-1764, 2016 | 44 | 2016 |
On the quantitative hardness of CVP H Bennett, A Golovnev, N Stephens-Davidowitz FOCS, 13-24, 2017 | 41 | 2017 |
Just take the average! An embarrassingly simple -time algorithm for SVP (and CVP) D Aggarwal, N Stephens-Davidowitz SOSA, 2018 | 40 | 2018 |
A reverse Minkowski theorem O Regev, N Stephens-Davidowitz Annals of Mathematics 199 (1), 1-49, 2024 | 39* | 2024 |
(Gap/S) ETH hardness of SVP D Aggarwal, N Stephens-Davidowitz STOC, 2018 | 30 | 2018 |
Fine-grained hardness of CVP(P)---Everything that we can prove (and nothing else) D Aggarwal, H Bennett, A Golovnev, N Stephens-Davidowitz SODA, 2021 | 29 | 2021 |
An inequality for Gaussians on lattices O Regev, N Stephens-Davidowitz SIAM Journal on Discrete Mathematics 31 (2), 749-757, 2017 | 26 | 2017 |
Lattice reduction for modules, or how to reduce ModuleSVP to ModuleSVP. T Mukherjee, N Stephens-Davidowitz CRYPTO, 2020 | 20 | 2020 |
Just how hard are rotations of ? Algorithms and cryptography with the simplest lattice H Bennett, A Ganju, P Peetathawatchai, N Stephens-Davidowitz Eurocrypt, 2023 | 19* | 2023 |
Dimension-preserving reductions between lattice problems N Stephens-Davidowitz noahsd.com, 2015 | 19 | 2015 |
On the Gaussian Measure Over Lattices. N Stephens-Davidowitz New York University, USA, 2017 | 18 | 2017 |