Deep learning-based cross-classifications reveal conserved spatial behaviors within tumor histological images J Noorbakhsh, S Farahmand, S Namburi, D Caruana, D Rimm, ... Nature Communications 11 (6367), 2020 | 143 | 2020 |
Deep learning trained on hematoxylin and eosin tumor region of Interest predicts HER2 status and trastuzumab treatment response in HER2+ breast cancer ERKZ Saman Farahmand, Aileen I. Fernandez, Fahad Shabbir Ahmed, David L ... Modern Pathology, 2022 | 78 | 2022 |
Machine learning guided association of adverse drug reactions with in vitro target-based pharmacology R Ietswaart, S Arat, AX Chen, S Farahmand, B Kim, W DuMouchel, ... Ebiomedicine 57 (102837), 2020 | 67 | 2020 |
Human gait database for normal walk collected by smartphone accelerometer A Vajdi, MR Zaghian, NR Dehkordi, E Rastegari, K Maroofi, S Farahmand, ... arXiv preprint arXiv:1905.03109, 2019 | 17 | 2019 |
Causal Inference Engine: a platform for directional gene set enrichment analysis and inference of active transcriptional regulators S Farahmand, C O’Connor, JA Macoska, K Zarringhalam Nucleic acids research 47 (22), 11563-11573, 2019 | 16 | 2019 |
Pan-cancer classifications of tumor histological images using deep learning J Noorbakhsh, S Farahmand, M Soltanieh-ha, S Namburi, K Zarringhalam, ... Preprint at https://www. biorxiv. org/content/10.1101/715656v1, 2019 | 14 | 2019 |
ModEx: A text mining system for extracting mode of regulation of Transcription Factor-gene regulatory interaction S Farahmand, T Riley, K Zarringhalam Journal of Biomedical Informatics 102, 103353, 2020 | 10 | 2020 |
Systems genetics of nonsyndromic orofacial clefting provides insights into its complex aetiology Z Razaghi-Moghadam, A Namipashaki, S Farahmand, N Ansari-Pour European Journal of Human Genetics 27 (2), 226-234, 2019 | 10 | 2019 |
CytoGTA: A cytoscape plugin for identifying discriminative subnetwork markers using a game theoretic approach S Farahmand, MH Foroughmand-Araabi, S Goliaei, ... PloS one 12 (10), e0185016, 2017 | 10 | 2017 |
GTA: a game theoretic approach to identifying cancer subnetwork markers S Farahmand, S Goliaei, N Ansari-Pour, Z Razaghi-Moghadam Molecular BioSystems 12 (3), 818-825, 2016 | 10 | 2016 |
Foroughi pour A, Namburi S, Caruana D, Rimm D, et al J Noorbakhsh, S Farahmand Deep learning-based cross-classifications reveal conserved spatial behaviors …, 2020 | 6 | 2020 |
Deep learning trained on H&E tumor ROIs predicts HER2 status and Trastuzumab treatment response in HER2+ breast cancer S Farahmand, AI Fernandez, FS Ahmed, DL Rimm, JH Chuang, ... bioRxiv, 2021.06. 14.448356, 2021 | 4 | 2021 |
Identifying cancer subnetwork markers using game theory method S Farahmand, S Goliaei, ZRM Kashani, S Farahmand International Conference on Biomedical and Health Informatics: ICBHI 2015 …, 2019 | 3 | 2019 |
Abstract PO-003: Deep learning identifies conserved pan-cancer tumor features J Noorbakhsh, S Farahmand, A Foroughi pour, S Namburi, D Caruana, ... Clinical Cancer Research 27 (5_Supplement), PO-003-PO-003, 2021 | 1 | 2021 |
Convolutional neural networks for classification of cancer histological images JHM Chuang, J Noorbakhsh, K Zarringhalam, S Farahmand, ... US Patent App. 17/628,144, 2022 | | 2022 |
Machine Learning Models for Deciphering Regulatory Mechanisms and Morphological Variations in Cancer S Farahmand University of Massachusetts Boston, 2021 | | 2021 |
Deep learning functional associations using histopathology images J Noorbakhsh, S Farahmand, MS Ha, S Namburi, K Zarringhalam, ... Cancer Research 79 (13_Supplement), 1632-1632, 2019 | | 2019 |
Ali Foroughi pour, Sandeep Namburi, Dennis Caruana, David Rimm, Mohammad Soltanieh-ha, Kourosh Zarringhalam, and Jeffrey H. Chuang. 2020. Deep learning-based cross … J Noorbakhsh, S Farahmand Bioinformatics. https://doi. org/10.1101/715656, 0 | | |