A fully-mixed finite element method for the Navier–Stokes/Darcy coupled problem with nonlinear viscosity S Caucao, GN Gatica, R Oyarzúa, I Šebestová Journal of Numerical Mathematics 25 (2), 55-88, 2017 | 37 | 2017 |
A Banach space mixed formulation for the unsteady Brinkman-Forchheimer equations S Caucao, I Yotov IMA Journal of Numerical Analysis 41 (4), 2708-2743, 2021 | 29 | 2021 |
A new mixed-FEM for steady-state natural convection models allowing conservation of momentum and thermal energy S Caucao, R Oyarzúa, S Villa-Fuentes Calcolo 57 (4), 36, 2020 | 29 | 2020 |
A Banach spaces-based analysis of a new mixed-primal finite element method for a coupled flow-transport problem GA Benavides, S Caucao, GN Gatica, AA Hopper Computer Methods in Applied Mechanics and Engineering 371, 113285, 2020 | 24 | 2020 |
A conforming mixed finite element method for the Navier–Stokes/Darcy–Forchheimer coupled problem S Caucao, M Discacciati, GN Gatica, R Oyarzúa ESAIM: Mathematical Modelling and Numerical Analysis 54 (5), 1689-1723, 2020 | 23 | 2020 |
A posteriori error analysis of a fully-mixed formulation for the Navier–Stokes/Darcy coupled problem with nonlinear viscosity S Caucao, GN Gatica, R Oyarzúa Computer Methods in Applied Mechanics and Engineering 315, 943-971, 2017 | 23 | 2017 |
A priori and a posteriori error analysis of a pseudostress-based mixed formulation of the Stokes problem with varying density S Caucao, D Mora, R Oyarzúa IMA Journal of Numerical Analysis 36 (2), 947-983, 2016 | 20 | 2016 |
A fully-mixed formulation for the steady double-diffusive convection system based upon Brinkman–Forchheimer equations S Caucao, GN Gatica, R Oyarzúa, N Sánchez Journal of Scientific Computing 85 (2), 44, 2020 | 19 | 2020 |
A Banach spaces-based fully-mixed finite element method for the stationary chemotaxis-Navier-Stokes problem S Caucao, E Colmenares, GN Gatica, C Inzunza Computers & Mathematics with Applications 145, 65-89, 2023 | 18 | 2023 |
A multipoint stress-flux mixed finite element method for the Stokes-Biot model S Caucao, T Li, I Yotov Numerische Mathematik 152, 411-473, 2022 | 17 | 2022 |
A new non-augmented and momentum-conserving fully-mixed finite element method for a coupled flow-transport problem GA Benavides, S Caucao, GN Gatica, AA Hopper Calcolo 59 (1), 6, 2022 | 17 | 2022 |
A three-field Banach spaces-based mixed formulation for the unsteady Brinkman–Forchheimer equations S Caucao, R Oyarzúa, S Villa-Fuentes, I Yotov Computer Methods in Applied Mechanics and Engineering 394, 114895, 2022 | 15 | 2022 |
A fully-mixed formulation in Banach spaces for the coupling of the steady Brinkman–Forchheimer and double-diffusion equations S Caucao, GN Gatica, JP Ortega ESAIM: Mathematical Modelling and Numerical Analysis 55 (6), 2725-2758, 2021 | 11 | 2021 |
A fully-mixed finite element method for the coupling of the Navier–Stokes and Darcy–Forchheimer equations S Caucao, GN Gatica, F Sandoval Numerical Methods for Partial Differential Equations 37 (3), 2550-2587, 2021 | 10 | 2021 |
Analysis of an augmented fully-mixed formulation for the coupling of the Stokes and heat equations S Caucao, GN Gatica, R Oyarzúa ESAIM: Mathematical Modelling and Numerical Analysis 52 (5), 1947-1980, 2018 | 10 | 2018 |
A Banach spaces-based mixed finite element method for the stationary convective Brinkman–Forchheimer problem S Caucao, GN Gatica, LF Gatica Calcolo 60 (4), 51, 2023 | 8 | 2023 |
A posteriori error analysis of an augmented fully mixed formulation for the nonisothermal Oldroyd–Stokes problem S Caucao, GN Gatica, R Oyarzúa Numerical Methods for Partial Differential Equations 35 (1), 295-324, 2019 | 8 | 2019 |
An augmented mixed FEM for the convective Brinkman-Forchheimer problem: a priori and a posteriori error analysis S Caucao, J Esparza Journal of Computational and Applied Mathematics 438, 115517, 2024 | 7 | 2024 |
Residual-based a posteriori error analysis for the coupling of the Navier–Stokes and Darcy–Forchheimer equations S Caucao, GN Gatica, R Oyarzúa, F Sandoval ESAIM: Mathematical Modelling and Numerical Analysis 55 (2), 659-687, 2021 | 7 | 2021 |
A posteriori error analysis of a momentum conservative Banach spaces based mixed-FEM for the Navier–Stokes problem J Camano, S Caucao, R Oyarzúa, S Villa-Fuentes Applied Numerical Mathematics 176, 134-158, 2022 | 5 | 2022 |