关注
Sebastian W. Ober
Sebastian W. Ober
在 cam.ac.uk 的电子邮件经过验证
标题
引用次数
引用次数
年份
Bayesian neural network priors revisited
V Fortuin, A Garriga-Alonso, SW Ober, F Wenzel, G Rätsch, RE Turner, ...
arXiv preprint arXiv:2102.06571, 2021
1482021
The promises and pitfalls of deep kernel learning
SW Ober, CE Rasmussen, M van der Wilk
Uncertainty in Artificial Intelligence, 1206-1216, 2021
1012021
Global inducing point variational posteriors for bayesian neural networks and deep gaussian processes
SW Ober, L Aitchison
International Conference on Machine Learning, 8248-8259, 2021
562021
Benchmarking the Neural Linear Model for Regression
SW Ober, CE Rasmussen
arXiv preprint arXiv:1912.08416, 2019
472019
Understanding Variational Inference in Function-Space
DR Burt, SW Ober, A Garriga-Alonso, M van der Wilk
arXiv preprint arXiv:2011.09421, 2020
462020
Deep kernel processes
L Aitchison, A Yang, SW Ober
International Conference on Machine Learning, 130-140, 2021
432021
Modeling and detecting student attention and interest level using wearable computers
Z Zhu, S Ober, R Jafari
2017 IEEE 14th international conference on wearable and implantable body …, 2017
332017
Last Layer Marginal Likelihood for Invariance Learning
P Schwöbel, M Jørgensen, SW Ober, M Van Der Wilk
International Conference on Artificial Intelligence and Statistics, 3542-3555, 2022
232022
Inducing point allocation for sparse gaussian processes in high-throughput bayesian optimisation
HB Moss, SW Ober, V Picheny
International Conference on Artificial Intelligence and Statistics, 5213-5230, 2023
162023
Trieste: Efficiently Exploring The Depths of Black-box Functions with TensorFlow
V Picheny, J Berkeley, HB Moss, H Stojic, U Granta, SW Ober, A Artemev, ...
arXiv preprint arXiv:2302.08436, 2023
92023
A variational approximate posterior for the deep Wishart process
SW Ober, L Aitchison
Thirty-Fifth Conference on Neural Information Processing Systems, 2021
62021
An improved variational approximate posterior for the deep wishart process
SW Ober, B Anson, E Milsom, L Aitchison
Uncertainty in Artificial Intelligence, 1555-1563, 2023
52023
Information-theoretic Inducing Point Placement for High-throughput Bayesian Optimisation
HB Moss, SW Ober, V Picheny
arXiv preprint arXiv:2206.02437, 2022
42022
Recommendations for Baselines and Benchmarking Approximate Gaussian Processes
SW Ober, A Artemev, M Wagenländer, R Grobins, M van der Wilk
arXiv preprint arXiv:2402.09849, 2024
12024
Active learning for affinity prediction of antibodies
A Gessner, SW Ober, O Vickery, D Oglić, T Uçar
arXiv e-prints, arXiv: 2406.07263, 2024
2024
Towards Improved Variational Inference for Deep Bayesian Models
SW Ober
2023
系统目前无法执行此操作,请稍后再试。
文章 1–16