关注
Thomas Wolgast
标题
引用次数
引用次数
年份
Reactive power markets: A review
T Wolgast, S Ferenz, A Nieße
IEEE access 10, 28397-28410, 2022
442022
Towards reinforcement learning for vulnerability analysis in power-economic systems
T Wolgast, EMSP Veith, A Nieße
Energy Informatics 4, 1-20, 2021
122021
Analyzing power grid, ICT, and market without domain knowledge using distributed artificial intelligence
E Veith, S Balduin, N Wenninghoff, M Tröschel, L Fischer, A Nieße, ...
arXiv preprint arXiv:2006.06074, 2020
122020
A sketch of unwanted gaming strategies in flexibility provision for the energy system
S Buchholz, PH Tiemann, T Wolgast, A Scheunert, J Gerlach, N Majumdar, ...
16th International Conference on Wirtschaftsinformatik, Pre-Conference …, 2021
42021
Towards modular composition of agent-based voltage control concepts
T Wolgast, A Nieße
Energy Informatics 2 (Suppl 1), 26, 2019
42019
ANALYSE — Learning to attack cyber–physical energy systems with intelligent agents
T Wolgast, N Wenninghoff, S Balduin, E Veith, B Fraune, T Woltjen, ...
SoftwareX 23, 101484, 2023
32023
ANALYSE--Learning to Attack Cyber-Physical Energy Systems With Intelligent Agents
T Wolgast, N Wenninghoff, S Balduin, E Veith, B Fraune, T Woltjen, ...
arXiv preprint arXiv:2305.09476, 2023
32023
Design and evaluation of a multi-level reactive power market
J Bozionek, T Wolgast, A Nieße
Energy Informatics 5 (1), 6, 2022
32022
Dynamic inspection interval determination for efficient distribution grid asset-management
T Neugebauer, T Wolgast, A Nieße
Energies 13 (15), 3875, 2020
32020
Approximating energy market clearing and bidding with model-based reinforcement learning
T Wolgast, A Nieße
arXiv preprint arXiv:2303.01772, 2023
22023
palaestrAI: A training ground for autonomous agents
E Veith, S Balduin, N Wenninghoff, T Wolgast, M Baumann, D Winkler, ...
Proceedings of the 37th annual European Simulation and Modelling Conference …, 2023
22023
Learning to Attack Powergrids with DERs
E Veith, N Wenninghoff, S Balduin, T Wolgast, S Lehnhoff
arXiv preprint arXiv:2204.11352, 2022
12022
Learning the Optimal Power Flow: Environment Design Matters
T Wolgast, A Nieße
arXiv preprint arXiv:2403.17831, 2024
2024
Publisher Correction: Towards reinforcement learning for vulnerability analysis in power-economic systems.
T Wolgast, EMSP Veith, A Nieße
Energy Inform. 6 (1), 11, 2023
2023
Towards Reinforcement Learning for Vulnerability Detection in Power Systems and Markets: Poster
T Wolgast, EMSP Veith, A Nieße
Proceedings of the Twelfth ACM International Conference on Future Energy …, 2021
2021
系统目前无法执行此操作,请稍后再试。
文章 1–15