Persistence images: A stable vector representation of persistent homology H Adams, T Emerson, M Kirby, R Neville, C Peterson, P Shipman, ... Journal of Machine Learning Research 18 (8), 1-35, 2017 | 838 | 2017 |
Topological data analysis of biological aggregation models CM Topaz, L Ziegelmeier, T Halverson PloS one 10 (5), e0126383, 2015 | 204 | 2015 |
Flipped calculus: A study of student performance and perceptions LB Ziegelmeier, CM Topaz Primus 25 (9-10), 847-860, 2015 | 106 | 2015 |
A complete characterization of the one-dimensional intrinsic Čech persistence diagrams for metric graphs E Gasparovic, M Gommel, E Purvine, R Sazdanovic, B Wang, Y Wang, ... Research in Computational Topology, 33-56, 2018 | 51 | 2018 |
Analyzing collective motion with machine learning and topology D Bhaskar, A Manhart, J Milzman, JT Nardini, KM Storey, CM Topaz, ... Chaos: An Interdisciplinary Journal of Nonlinear Science 29 (12), 2019 | 50 | 2019 |
A topological approach to selecting models of biological experiments M Ulmer, L Ziegelmeier, CM Topaz PloS one 14 (3), e0213679, 2019 | 34 | 2019 |
On homotopy types of Vietoris–Rips complexes of metric gluings M Adamaszek, H Adams, E Gasparovic, M Gommel, E Purvine, ... Journal of Applied and Computational Topology 4, 425-454, 2020 | 28 | 2020 |
Capturing Dynamics of Time-Varying Data via Topology L Xian, H Adams, CM Topaz, L Ziegelmeier arXiv preprint arXiv:2010.05780, 2020 | 27 | 2020 |
Minimal Cycle Representatives in Persistent Homology Using Linear Programming: An Empirical Study With User’s Guide L Li, C Thompson, G Henselman-Petrusek, C Giusti, L Ziegelmeier Frontiers in artificial intelligence 4, 681117, 2021 | 23 | 2021 |
Persistence images: an alternative persistent homology representation S Chepushtanova, T Emerson, E Hanson, M Kirby, F Motta, R Neville, ... arXiv preprint arXiv:1507.06217 7, 2015 | 15 | 2015 |
Sparse locally linear embedding L Ziegelmeier, M Kirby, C Peterson Procedia Computer Science 108, 635-644, 2017 | 14 | 2017 |
An application of persistent homology on Grassmann manifolds for the detection of signals in hyperspectral imagery S Chepushtanova, M Kirby, C Peterson, L Ziegelmeier 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS …, 2015 | 14 | 2015 |
Mind the gap: A study in global development through persistent homology A Banman, L Ziegelmeier Research in Computational Topology, 125-144, 2018 | 12 | 2018 |
Vietoris-rips and cech complexes of metric gluings M Adamaszek, H Adams, E Gasparovic, M Gommel, E Purvine, ... 34th International Symposium on Computational Geometry (SoCG 2018), 2018 | 11 | 2018 |
The relationship between the intrinsic Čech and persistence distortion distances for metric graphs E Gasparovic, M Gommel, E Purvine, R Sazdanovic, B Wang, Y Wang, ... arXiv preprint arXiv:1812.05282, 2018 | 6 | 2018 |
Stratifying high-dimensional data based on proximity to the convex hull boundary L Ziegelmeier, M Kirby, C Peterson SIAM Review 59 (2), 346-365, 2017 | 6 | 2017 |
Exploiting geometry, topology, and optimization for knowledge discovery in big data LB Ziegelmeier Colorado State University, 2013 | 6 | 2013 |
Research in Computational Topology EW Chambers, BT Fasy, L Ziegelmeier Springer International Publishing, 2018 | 5 | 2018 |
Persistent homology on grassmann manifolds for analysis of hyperspectral movies S Chepushtanova, M Kirby, C Peterson, L Ziegelmeier Computational Topology in Image Context: 6th International Workshop, CTIC …, 2016 | 5 | 2016 |
A complete characterization of the 1-dimensional intrinsic cech persistence diagrams for metric graphs. Research in Computational Topology. To appear E Gasparovic, M Gommel, E Purvine, R Sazdanovic, B Wang, Y Wang, ... arXiv preprint arXiv:1702.07379, 0 | 3 | |