关注
Kajetan Fricke
Kajetan Fricke
Battery Data Scientist
在 ucf.edu 的电子邮件经过验证
标题
引用次数
引用次数
年份
A tutorial on solving ordinary differential equations using Python and hybrid physics-informed neural network
RG Nascimento, K Fricke, FAC Viana
Engineering Applications of Artificial Intelligence 96, 103996, 2020
1012020
Quadcopter control optimization through machine learning
R Giorgiani do Nascimento, K Fricke, F Viana
AIAA Scitech 2020 Forum, 1148, 2020
112020
Quadcopter soft vertical landing control with hybrid physics-informed machine learning
K Fricke, R Giorgiani do Nascimento, F Viana
AIAA Scitech 2021 Forum, 1018, 2021
82021
An accelerated life testing dataset for lithium-ion batteries with constant and variable loading conditions
K Fricke, R Nascimento, M Corbetta, C Kulkarni, F Viana
International Journal of Prognostics and Health Management 14 (2), 2023
22023
Prognosis of Li-ion Batteries Under Large Load Variations Using Hybrid Physics-Informed Neural Networks
K Fricke, R Nascimento, M Corbetta, C Kulkarni, F Viana
Annual Conference of the PHM Society 15 (1), 2023
2023
Modeling and Experimental Validation of Mission-Specific Prognosis of Li-Ion Batteries with Hybrid Physics-Informed Neural Networks
K Fricke
2023
Hybrid Physics-Informed Neural Networks for Prognosis and Fleet Management of Li-Ion Batteries Under Large Load Variations
K Fricke, RG Nascimento, M Corbetta, C Kulkarni, F Viana
Available at SSRN 4672043, 0
系统目前无法执行此操作,请稍后再试。
文章 1–7