On the interpretation of weight vectors of linear models in multivariate neuroimaging S Haufe, F Meinecke, K Görgen, S Dähne, JD Haynes, B Blankertz, ... NeuroImage 87, 96-110, 2014 | 1287 | 2014 |
The Decoding Toolbox (TDT): A versatile software package for multivariate analyses of functional imaging data MN Hebart, K Görgen, JD Haynes Frontiers in Neuroinformatics 8, 88, 2014 | 421 | 2014 |
The point of no return in vetoing self-initiated movements M Schultze-Kraft, D Birman, M Rusconi, C Allefeld, K Görgen, S Dähne, ... Proceedings of the National Academy of Sciences 113 (4), 1080-1085, 2016 | 291 | 2016 |
Valid population inference for information-based imaging: from the second-level t-test to prevalence inference C Allefeld, K Görgen, JD Haynes NeuroImage 141, 378-392, 2016 | 162 | 2016 |
Compositionality of rule representations in human prefrontal cortex C Reverberi, K Görgen, JD Haynes Cerebral cortex 22 (6), 1237-1246, 2012 | 154 | 2012 |
Distributed Representations of Rule Identity and Rule Order in Human Frontal Cortex and Striatum C Reverberi, K Görgen, JD Haynes The Journal of Neuroscience 32 (48), 17420-17430, 2012 | 66 | 2012 |
The same analysis approach: practical protection against the pitfalls of novel neuroimaging analysis methods K Görgen, MN Hebart, C Allefeld, JD Haynes Neuroimage 180, 19-30, 2018 | 37 | 2018 |
Neural Representations of Hierarchical Rule Sets: The Human Control System Represents Rules Irrespective of the Hierarchical Level to Which They Belong D Pischedda, K Görgen, JD Haynes, C Reverberi Journal of Neuroscience 37 (50), 12281-12296, 2017 | 27 | 2017 |
Neural representations of hierarchical rule sets: The human control system represents rules irrespective of their hierarchical level D Pischedda, K Görgen, J Haynes, C Reverberi International Conference Cognitive Neuroscience of Executive Functions (CNEF …, 2017 | 27* | 2017 |
On the interpretability of linear multivariate neuroimaging analyses: Filters, patterns and their relationship F Bießmann, S Dähne, FC Meinecke, B Blankertz, K Görgen, KR Müller, ... 2nd NIPS Workshop on Machine Learning and Interpretation in NeuroImaging, 2012 | 14 | 2012 |
Structural differences in adolescent brains can predict alcohol misuse RP Rane, EF de Man, JH Kim, K Görgen, M Tschorn, MA Rapp, ... Elife 11, e77545, 2022 | 12 | 2022 |
The Decoding Toolbox (TDT): A new fMRI analysis package for SPM and Matlab K Görgen, MN Hebart, JD Haynes Poster presented at 18th Annual Meeting of the Organization for Human Brain …, 2012 | 11 | 2012 |
Combining Eyetracking and EEG K Görgen Publications of the Institute of Cognitive Science 15, 2010 | 8 | 2010 |
Working memory signals in early visual cortex do not depend on visual imagery S Weber, T Christophel, K Görgen, J Soch, JD Haynes bioRxiv, 2023.02. 13.528298, 2023 | 7* | 2023 |
Parameter interpretation, regularization and source localization in multivariate linear models S Haufe, F Meinecke, K Görgen, S Dähne, JD Haynes, B Blankertz, ... Pattern Recognition in Neuroimaging, 2014 International Workshop on, 1-4, 2014 | 7 | 2014 |
FMRI decoding of intentions: Compositionality, hierarchy and prospective memory JD Haynes, D Wisniewski, K Görgen, I Momennejad, C Reverberi The 3rd International Winter Conference on Brain-Computer Interface, 1-3, 2015 | 5 | 2015 |
Neural correlates of changing food choices while bypassing values A Zahedi, SO Artigas, N Swaboda, CE Wiers, K Görgen, SQ Park NeuroImage 274, 120134, 2023 | 3 | 2023 |
Working memory signals in early visual cortex are present in weak and strong imagers S Weber, T Christophel, K Görgen, J Soch, JD Haynes Human Brain Mapping 45 (3), e26590, 2024 | 2 | 2024 |
The context-dependent nature of the neural implementation of intentions S Uithol, K Görgen, D Pischedda, I Toni, JD Haynes bioRxiv, 401174, 2018 | 2 | 2018 |
Detecting, Avoiding & Eliminating Confounds in MVPA / Decoding Studies K Görgen, MN Hebart, C Allefeld, JD , Haynes Human Brain Mapping Organization OHBM 2014, Abstract 874, Poster 3463 (Wth …, 2014 | 2 | 2014 |