A well-posedness theory in measures for some kinetic models of collective motion JA Canizo, JA Carrillo, J Rosado Mathematical Models and Methods in Applied Sciences 21 (03), 515-539, 2011 | 324 | 2011 |
Stochastic mean-field limit: non-Lipschitz forces and swarming F Bolley, JA Canizo, JA Carrillo Mathematical Models and Methods in Applied Sciences 21 (11), 2179-2210, 2011 | 279 | 2011 |
Mean-field limit for the stochastic Vicsek model J Carrillo, JA Cañizo, F Bolley Applied Mathematics Letters 25 (3), 339, 2011 | 121* | 2011 |
Improved duality estimates and applications to reaction-diffusion equations JA Canizo, L Desvillettes, K Fellner Communications in Partial Differential Equations 39 (6), 1185-1204, 2014 | 111 | 2014 |
Existence of compactly supported global minimisers for the interaction energy JA Cañizo, JA Carrillo, FS Patacchini Archive for Rational Mechanics and Analysis 217, 1197-1217, 2015 | 93 | 2015 |
Measure solutions for some models in population dynamics JA Cañizo, JA Carrillo, S Cuadrado Acta applicandae mathematicae 123 (1), 141-156, 2013 | 87 | 2013 |
Phase transitions in a kinetic flocking model of Cucker--Smale type ABT Barbaro, JA Canizo, JA Carrillo, P Degond Multiscale Modeling & Simulation 14 (3), 1063-1088, 2016 | 73 | 2016 |
Rate of convergence to an asymptotic profile for the self-similar fragmentation and growth-fragmentation equations MJ Cáceres, JA Canizo, S Mischler Journal de mathématiques pures et appliquées 96 (4), 334-362, 2011 | 61 | 2011 |
A new approach to the creation and propagation of exponential moments in the Boltzmann equation R Alonso, JA Canizo, I Gamba, C Mouhot Communications in Partial Differential Equations 38 (1), 155-169, 2013 | 56 | 2013 |
Fine asymptotics of profiles and relaxation to equilibrium for growth-fragmentation equations with variable drift rates D Balagué, J Cañizo, P Gabriel arXiv preprint arXiv:1203.6156, 2012 | 49 | 2012 |
Collective behavior of animals: Swarming and complex patterns JA Canizo, JA Carrillo, J Rosado Arbor 186 (1035-1049), 1, 2010 | 48 | 2010 |
Three eras of micellization JC Neu, JA Cañizo, LL Bonilla Physical Review E 66 (6), 061406, 2002 | 48 | 2002 |
Asymptotic behaviour of neuron population models structured by elapsed-time JA Cañizo, H Yoldaş Nonlinearity 32 (2), 464, 2019 | 45 | 2019 |
Global L1 theory and regularity for the 3D nonlinear Wigner–Poisson–Fokker–Planck system JA Cañizo, JL López, J Nieto Journal of Differential Equations 198 (2), 356-373, 2004 | 42 | 2004 |
Regularity and mass conservation for discrete coagulation–fragmentation equations with diffusion JA Cañizo, L Desvillettes, K Fellner Annales de l'IHP Analyse non linéaire 27 (2), 639-654, 2010 | 31 | 2010 |
Spectral gap for the growth-fragmentation equation via Harris's Theorem JA Cañizo, P Gabriel, H Yoldas SIAM Journal on Mathematical Analysis 53 (5), 5185-5214, 2021 | 29 | 2021 |
Exponential convergence to equilibrium for subcritical solutions of the Becker–Döring equations JA Canizo, B Lods Journal of Differential Equations 255 (5), 905-950, 2013 | 26 | 2013 |
Regularity, local behavior and partial uniqueness for self-similar profiles of Smoluchowski's coagulation equation JA Canizo, S Mischler Revista Matemática Iberoamericana 27 (3), 803-839, 2011 | 25* | 2011 |
Convergence to equilibrium for the discrete coagulation-fragmentation equations with detailed balance JA Cañizo Journal of Statistical Physics 129, 1-26, 2007 | 25 | 2007 |
Trend to equilibrium for the Becker–Döring equations: an analogue of Cercignani’s conjecture J Cañizo, A Einav, B Lods Analysis & PDE 10 (7), 1663-1708, 2017 | 24 | 2017 |