Trusted multi-view classification with dynamic evidential fusion Z Han, C Zhang, H Fu, JT Zhou IEEE transactions on pattern analysis and machine intelligence 45 (2), 2551-2566, 2022 | 256 | 2022 |
Deep partial multi-view learning C Zhang, Y Cui, Z Han, JT Zhou, H Fu, Q Hu IEEE transactions on pattern analysis and machine intelligence 44 (5), 2402-2415, 2020 | 194 | 2020 |
CPM-Nets: Cross partial multi-view networks C Zhang, Z Han, H Fu, JT Zhou, Q Hu Advances in Neural Information Processing Systems 32, 2019 | 134 | 2019 |
Trustworthy Long-Tailed Classification B Li, Z Han, H Li, H Fu, C Zhang Conference on Computer Vision and Pattern Recognition (CVPR 2022), 2021 | 66 | 2021 |
Multimodal dynamics: Dynamical fusion for trustworthy multimodal classification Z Han, F Yang, J Huang, C Zhang, J Yao Conference on Computer Vision and Pattern Recognition (CVPR 2022), 20707-20717, 2022 | 57 | 2022 |
Uncertainty-Aware Multi-View Representation Learning Y Geng, Z Han, C Zhang, Q Hu AAAI Conference on Artificial Intelligence (AAAI 2021), 2022 | 47 | 2022 |
Trusted multi-view classification Z Han, C Zhang, H Fu, JT Zhou International Conference on Learning Representations, 2020 | 35 | 2020 |
Trustworthy Multimodal Regression with Mixture of Normal-inverse Gamma Distributions H Ma, Z Han, C Zhang, H Fu, JT Zhou, Q Hu Advances in Neural Information Processing Systems (NeurIPS 2021) 34, 2021 | 32 | 2021 |
UMIX: Improving Importance Weighting for Subpopulation Shift via Uncertainty-Aware Mixup Z Han, Z Liang, F Yang, L Liu, L Li, Y Bian, P Zhao, B Wu, C Zhang, J Yao Advances in Neural Information Processing Systems (NeurIPS 2022) 35, 2022 | 27 | 2022 |
Autoencoder in autoencoder networks C Zhang, Y Geng, Z Han, Y Liu, H Fu, Q Hu IEEE Transactions on Neural Networks and Learning Systems (IEEE TNNLS), 2022 | 22 | 2022 |
Hallucination of multimodal large language models: A survey Z Bai, P Wang, T Xiao, T He, Z Han, Z Zhang, MZ Shou arXiv preprint arXiv:2404.18930, 2024 | 14 | 2024 |
Exploring and Exploiting Uncertainty for Incomplete Multi-View Classification M Xie, Z Han, C Zhang, Y Bai, Q Hu Conference on Computer Vision and Pattern Recognition (CVPR 2023), 2023 | 10 | 2023 |
Skip \n: A simple method to reduce hallucination in Large Vision-Language Models Z Han, Z Bai, H Mei, Q Xu, C Zhang, MZ Shou arXiv preprint arXiv:2402.01345, 2024 | 3 | 2024 |
Reweighted mixup for subpopulation shift Z Han, Z Liang, F Yang, L Liu, L Li, Y Bian, P Zhao, Q Hu, B Wu, C Zhang, ... arXiv preprint arXiv:2304.04148, 2023 | 3 | 2023 |
Learning with noisy labels over imbalanced subpopulations M Chen, Y Zhao, B He, Z Han, J Huang, B Wu, J Yao IEEE Transactions on Neural Networks and Learning Systems, 2024 | 2 | 2024 |
Multimodal fusion on low-quality data: A comprehensive survey Q Zhang, Y Wei, Z Han, H Fu, X Peng, C Deng, Q Hu, C Xu, J Wen, D Hu, ... arXiv preprint arXiv:2404.18947, 2024 | 2 | 2024 |
Selective Learning: Towards Robust Calibration with Dynamic Regularization Z Han, Y Yang, C Zhang, L Zhang, JT Zhou, Q Hu, H Yao arXiv preprint arXiv:2402.08384, 2024 | 1 | 2024 |
ID-like Prompt Learning for Few-Shot Out-of-Distribution Detection Y Bai, Z Han, C Zhang, B Cao, X Jiang, Q Hu Conference on Computer Vision and Pattern Recognition (CVPR 2024), 2023 | 1 | 2023 |
Confidence-aware multi-modality learning for eye disease screening K Zou, T Lin, Z Han, M Wang, X Yuan, H Chen, C Zhang, X Shen, H Fu Medical Image Analysis 96, 103214, 2024 | | 2024 |
A principled framework for explainable multimodal disentanglement Z Han, T Luo, H Fu, Q Hu, JT Zhou, C Zhang Information Sciences 675, 120768, 2024 | | 2024 |