A modern take on the bias-variance tradeoff in neural networks B Neal, S Mittal, A Baratin, V Tantia, M Scicluna, S Lacoste-Julien, ... arXiv preprint arXiv:1810.08591, 2018 | 208 | 2018 |
Learning to combine top-down and bottom-up signals in recurrent neural networks with attention over modules S Mittal, A Lamb, A Goyal, V Voleti, M Shanahan, G Lajoie, M Mozer, ... International Conference on Machine Learning, 6972-6986, 2020 | 70 | 2020 |
Systematic evaluation of causal discovery in visual model based reinforcement learning NR Ke, A Didolkar, S Mittal, A Goyal, G Lajoie, S Bauer, D Rezende, ... NeurIPS 2021 Datasets and Benchmarks Track, 2021 | 39 | 2021 |
Is a modular architecture enough? S Mittal, Y Bengio, G Lajoie Advances in Neural Information Processing Systems 35, 28747-28760, 2022 | 34 | 2022 |
Diffusion-Based Representation Learning S Mittal, K Abstreiter, S Bauer, B Schölkopf, A Mehrjou International Conference on Machine Learning, 2023 | 24* | 2023 |
On neural architecture inductive biases for relational tasks G Kerg, S Mittal, D Rolnick, Y Bengio, B Richards, G Lajoie arXiv preprint arXiv:2206.05056, 2022 | 19 | 2022 |
Compositional Attention: Disentangling Search and Retrieval S Mittal, SC Raparthy, I Rish, Y Bengio, G Lajoie The International Conference on Learning Representations (ICLR), 2022, 2021 | 18 | 2021 |
A modern take on the bias-variance tradeoff in neural networks, 2019 B Neal, S Mittal, A Baratin, V Tantia, M Scicluna, S Lacoste-Julien, ... URL https://openreview. net/forum, 1810 | 7 | 1810 |
From points to functions: Infinite-dimensional representations in diffusion models S Mittal, G Lajoie, S Bauer, A Mehrjou arXiv preprint arXiv:2210.13774, 2022 | 6 | 2022 |
On diffusion models for amortized inference: Benchmarking and improving stochastic control and sampling M Sendera, M Kim, S Mittal, P Lemos, L Scimeca, J Rector-Brooks, ... arXiv preprint arXiv:2402.05098, 2024 | 5 | 2024 |
MixupE: Understanding and improving Mixup from directional derivative perspective Y Zou, V Verma, S Mittal, WH Tang, H Pham, J Kannala, Y Bengio, A Solin, ... Uncertainty in Artificial Intelligence, 2597-2607, 2023 | 5 | 2023 |
A Modern Take on the Bias-Variance Tradeoff in Neural Networks.[arXiv] B Neal, S Mittal, A Baratin, V Tantia, M Scicluna, S Lacoste-Julien, ... arXiv preprint arXiv:1810.08591, 2019 | 5 | 2019 |
Inductive biases for relational tasks G Kerg, S Mittal, D Rolnick, Y Bengio, BA Richards, G Lajoie ICLR2022 Workshop on the Elements of Reasoning: Objects, Structure and Causality, 2022 | 4 | 2022 |
Iterated Denoising Energy Matching for Sampling from Boltzmann Densities T Akhound-Sadegh, J Rector-Brooks, AJ Bose, S Mittal, P Lemos, CH Liu, ... arXiv preprint arXiv:2402.06121, 2024 | 3 | 2024 |
Exploring Exchangeable Dataset Amortization for Bayesian Posterior Inference S Mittal, NL Bracher, G Lajoie, P Jaini, MA Brubaker ICML 2023 Workshop on Structured Probabilistic Inference {\&} Generative …, 2023 | 1 | 2023 |
Leveraging Synthetic Targets for Machine Translation S Mittal, O Hrinchuk, O Kuchaiev Findings of the Association for Computational Linguistics (2023), 2023 | 1 | 2023 |
Amortizing intractable inference in diffusion models for vision, language, and control S Venkatraman, M Jain, L Scimeca, M Kim, M Sendera, M Hasan, L Rowe, ... arXiv preprint arXiv:2405.20971, 2024 | | 2024 |
Does learning the right latent variables necessarily improve in-context learning? S Mittal, E Elmoznino, L Gagnon, S Bhardwaj, D Sridhar, G Lajoie arXiv preprint arXiv:2405.19162, 2024 | | 2024 |
Exchangeable Dataset Amortization for Bayesian Posterior Inference S Mittal, NL Bracher, G Lajoie, P Jaini, MA Brubaker | | 2023 |