A finite-difference method for the numerical solution of the Schrödinger equation TE Simos, PS Williams Journal of Computational and Applied Mathematics 79 (2), 189-205, 1997 | 274 | 1997 |
An exponentially-fitted Runge-Kutta method for the numerical integration of initial-value problems with periodic or oscillating solutions TE Simos Computer Physics Communications 115 (1), 1-8, 1998 | 226 | 1998 |
A four-step phase-fitted method for the numerical integration of second order initial-value problems AD Raptis, TE Simos BIT Numerical Mathematics 31, 160-168, 1991 | 221 | 1991 |
An optimized Runge–Kutta method for the solution of orbital problems ZA Anastassi, TE Simos Journal of Computational and Applied Mathematics 175 (1), 1-9, 2005 | 212 | 2005 |
On finite difference methods for the solution of the Schrödinger equation TE Simos, PS Williams Computers & chemistry 23 (6), 513-554, 1999 | 199 | 1999 |
Runge–Kutta methods with minimal dispersion and dissipation for problems arising from computational acoustics K Tselios, TE Simos Journal of Computational and Applied Mathematics 175 (1), 173-181, 2005 | 191 | 2005 |
Newton–Cotes formulae for long-time integration Z Kalogiratou, TE Simos Journal of Computational and Applied Mathematics 158 (1), 75-82, 2003 | 187 | 2003 |
High order closed Newton–Cotes trigonometrically-fitted formulae for the numerical solution of the Schrödinger equation TE Simos Applied Mathematics and Computation 209 (1), 137-151, 2009 | 183 | 2009 |
New modified Runge–Kutta–Nyström methods for the numerical integration of the Schrödinger equation Z Kalogiratou, T Monovasilis, TE Simos Computers & Mathematics with Applications 60 (6), 1639-1647, 2010 | 182 | 2010 |
An optimized two-step hybrid block method for solving general second order initial-value problems H Ramos, Z Kalogiratou, T Monovasilis, TE Simos Numerical Algorithms 72, 1089-1102, 2016 | 180 | 2016 |
Trigonometrically fitted predictor–corrector methods for IVPs with oscillating solutions G Psihoyios, TE Simos Journal of Computational and Applied Mathematics 158 (1), 135-144, 2003 | 180 | 2003 |
A fourth algebraic order trigonometrically fitted predictor–corrector scheme for IVPs with oscillating solutions G Psihoyios, TE Simos Journal of Computational and Applied Mathematics 175 (1), 137-147, 2005 | 179 | 2005 |
Multiderivative methods of eighth algebraic order with minimal phase-lag for the numerical solution of the radial Schrödinger equation DP Sakas, TE Simos Journal of Computational and Applied Mathematics 175 (1), 161-172, 2005 | 176 | 2005 |
Exponentially and trigonometrically fitted methods for the solution of the Schrödinger equation TE Simos Acta Applicandae Mathematicae 110, 1331-1352, 2010 | 174 | 2010 |
Closed Newton–Cotes trigonometrically-fitted formulae of high order for long-time integration of orbital problems TE Simos Applied Mathematics Letters 22 (10), 1616-1621, 2009 | 174 | 2009 |
Symplectic integrators for the numerical solution of the Schrödinger equation Z Kalogiratou, T Monovasilis, TE Simos Journal of Computational and Applied Mathematics 158 (1), 83-92, 2003 | 174 | 2003 |
A parametric symmetric linear four-step method for the efficient integration of the Schrödinger equation and related oscillatory problems ZA Anastassi, TE Simos Journal of Computational and Applied Mathematics 236 (16), 3880-3889, 2012 | 172 | 2012 |
Optimization as a function of the phase-lag order of nonlinear explicit two-step P-stable method for linear periodic IVPs S Stavroyiannis, TE Simos Applied Numerical Mathematics 59 (10), 2467-2474, 2009 | 170 | 2009 |
Construction of an optimized explicit Runge–Kutta–Nyström method for the numerical solution of oscillatory initial value problems AA Kosti, ZA Anastassi, TE Simos Computers & Mathematics with Applications 61 (11), 3381-3390, 2011 | 168 | 2011 |
On modified Runge–Kutta trees and methods C Tsitouras, IT Famelis, TE Simos Computers & Mathematics with Applications 62 (4), 2101-2111, 2011 | 164 | 2011 |