关注
Tom Bertalan
Tom Bertalan
Chemical and Biomolecular Engineering, Johns Hopkins University
在 jhu.edu 的电子邮件经过验证 - 首页
标题
引用次数
引用次数
年份
On learning Hamiltonian systems from data
T Bertalan, F Dietrich, I Mezić, IG Kevrekidis
Chaos: An Interdisciplinary Journal of Nonlinear Science 29 (12), 2019
1432019
Alpha-particle radiotherapy: For large solid tumors diffusion trumps targeting
C Zhu, M Sempkowski, T Holleran, T Linz, T Bertalan, A Josefsson, ...
Biomaterials 130, 67-75, 2017
422017
An emergent space for distributed data with hidden internal order through manifold learning
FP Kemeth, SW Haugland, F Dietrich, T Bertalan, K Höhlein, Q Li, ...
IEEE Access 6, 77402-77413, 2018
262018
Emergent spaces for coupled oscillators
TN Thiem, M Kooshkbaghi, T Bertalan, CR Laing, IG Kevrekidis
Frontiers in computational neuroscience 14, 36, 2020
252020
Local conformal autoencoder for standardized data coordinates
E Peterfreund, O Lindenbaum, F Dietrich, T Bertalan, M Gavish, ...
Proceedings of the National Academy of Sciences 117 (49), 30918-30927, 2020
232020
Coarse-Grained Descriptions of Dynamics for Networks with both Intrinsic and Structural Heterogeneities
IGK Tom Bertalan, Yan Wu, Carlo Laing, C William Gear
Frontiers in Computational Neuroscience, 2017
122017
Dimension reduction in heterogeneous neural networks: generalized Polynomial Chaos (gPC) and ANalysis-Of-VAriance (ANOVA)
M Choi, T Bertalan, CR Laing, IG Kevrekidis
The European Physical Journal Special Topics 225, 1165-1180, 2016
112016
nSpyres, An OpenSource, Python Based Framework for Simulation of Flow through Porous Media
ES Carlson, AW Islam, F Dumkwu, TS Bertalan
4th International Conference on Porous Media and Annual Meeting of the …, 2012
102012
OpenMG: a new multigrid implementation in Python
TS Bertalan, AW Islam, RB Sidje, ES Carlson
Numerical Linear Algebra with Applications 21 (5), 685-700, 2014
62014
An equal space for complex data with unknown internal order: Observability, gauge invariance and manifold learning
FP Kemeth, SW Haugland, F Dietrich, T Bertalan, Q Li, EM Bollt, R Talmon, ...
arXiv preprint arXiv:1708.05406, 2017
22017
Certified Invertibility in Neural Networks via Mixed-Integer Programming
T Cui, T Bertalan, GJ Pappas, M Morari, Y Kevrekidis, M Fazlyab
Learning for Dynamics and Control Conference, 483-496, 2023
12023
Learning Partial Differential Equations in Emergent Coordinates
F Kemeth, T Bertalan, T Thiem, IG Kevrekidis
2021 AIChE Annual Meeting, 2021
12021
Tipping Point Dynamics for Epidemiological Networks. Constructing Reduced Dynamical Data-Driven Models for Evolving Graphs
N Evangelou, T Cui, J Bello-Rivas, A Makeev, T Bertalan, IG Kevrekidis
2022 AIChE Annual Meeting, 2022
2022
A Data-Driven Approach to Determining Problem Well-Posedness
T Bertalan, E Rebrova, G Kevrekidis, IG Kevrekidis
2022 AIChE Annual Meeting, 2022
2022
Some of the Variables, Some of the Times, with Some Things Known: Identification with Partial Information
S Malani, T Bertalan, T Cui, M Betenbaugh, J Avalos, IG Kevrekidis
2022 AIChE Annual Meeting, 2022
2022
Manifold Learning Post-Processing Galerkin Algorithms for Dissipative PDEs on Their Approximate Inertial Manifolds
CM Linares, T Bertalan, N Evangelou, ES Titi, IG Kevrekidis
2022 AIChE Annual Meeting, 2022
2022
Quantifying the Invertibility of Neural Networks and Their Transformations
T Cui, T Bertalan, IG Kevrekidis, M Fazlyab
2022 AIChE Annual Meeting, 2022
2022
Inverse Backward Analysis of Neural Approximants of Ordinary Differential Equations
T Bertalan, A Zhu, B Zhu, Y Tang, IG Kevrekidis
2022 AIChE Annual Meeting, 2022
2022
Addressing Well-Posedness in a Data-Driven Manner: Model Problems and Physics-Informed Neural Networks
T Bertalan, G Kevrekidis, S Mishra, IG Kevrekidis
2021 AIChE Annual Meeting, 2021
2021
Data-Driven Development of Approximate Inertial Forms and Closures for Coarse-Scale Modeling of Multiphase Flows
CM Linares, T Bertalan, S Lee, J Lu, G Tryggvason, IG Kevrekidis
2021 AIChE Annual Meeting, 2021
2021
系统目前无法执行此操作,请稍后再试。
文章 1–20