Enhanced fifth order WENO shock-capturing schemes with deep learning T Kossaczká, M Ehrhardt, M Günther Results in Applied Mathematics 12, 100201, 2021 | 34 | 2021 |
A neural network enhanced weighted essentially non-oscillatory method for nonlinear degenerate parabolic equations T Kossaczká, M Ehrhardt, M Günther Physics of Fluids 34 (2), 2022 | 16 | 2022 |
Deep FDM: Enhanced finite difference methods by deep learning T Kossaczká, M Ehrhardt, M Günther Franklin Open 4, 100039, 2023 | 9 | 2023 |
A deep smoothness WENO method with applications in option pricing T Kossaczká, M Ehrhardt, M Günther European Consortium for Mathematics in Industry, 417-423, 2021 | 8 | 2021 |
Deep smoothness weighted essentially non-oscillatory method for two-dimensional hyperbolic conservation laws: A deep learning approach for learning smoothness indicators T Kossaczká, AD Jagtap, M Ehrhardt Physics of Fluids 36 (3), 2024 | 3 | 2024 |
Deep finite difference method for solving Asian option pricing problems T Kossaczká, M Ehrhardt, M Gunther | 1 | 2023 |
Deep smoothness WENO scheme for two-dimensional hyperbolic conservation laws: A deep learning approach for learning smoothness indicators T Kossaczká, AD Jagtap, M Ehrhardt arXiv preprint arXiv:2309.10117, 2023 | 1 | 2023 |
Deep learning enhanced numerical schemes T Kossaczká Dissertation, Wuppertal, Bergische Universität Wuppertal, 2024, 0 | | |