Noise-aware statistical inference with differentially private synthetic data O Räisä, J Jälkö, S Kaski, A Honkela International Conference on Artificial Intelligence and Statistics, 3620-3643, 2023 | 11 | 2023 |
Differentially private hamiltonian monte carlo O Räisä, A Koskela, A Honkela arXiv preprint arXiv:2106.09376, 2021 | 7 | 2021 |
Subsampling is not magic: Why large batch sizes work for differentially private stochastic optimisation O Räisä, J Jälkö, A Honkela arXiv preprint arXiv:2402.03990, 2024 | 2 | 2024 |
On Consistent Bayesian Inference from Synthetic Data O Räisä, J Jälkö, A Honkela arXiv preprint arXiv:2305.16795, 2023 | 1 | 2023 |
Noise-Aware Differentially Private Regression via Meta-Learning O Räisä, S Markou, M Ashman, WP Bruinsma, M Tobaben, A Honkela, ... arXiv preprint arXiv:2406.08569, 2024 | | 2024 |
A Bias-Variance Decomposition for Ensembles over Multiple Synthetic Datasets O Räisä, A Honkela arXiv preprint arXiv:2402.03985, 2024 | | 2024 |
Differentially Private Metropolis–Hastings Algorithms O Räisä University of Helsinki, 2021 | | 2021 |