NIRS-SPM: statistical parametric mapping for near-infrared spectroscopy JC Ye, S Tak, KE Jang, J Jung, J Jang Neuroimage 44 (2), 428-447, 2009 | 1152 | 2009 |
SPM12 manual J Ashburner, G Barnes, C Chen, J Daunizeau, G Flandin, K Friston, ... London: Wellcome Trust, 2014 | 532 | 2014 |
Statistical Analysis of fNIRS Data: A Comprehensive Review S Tak, JC Ye NeuroImage 85 (1), 72-91, 2014 | 453 | 2014 |
Deep residual learning for accelerated MRI using magnitude and phase networks D Lee, J Yoo, S Tak, JC Ye IEEE Transactions on Biomedical Engineering 65 (9), 1985-1995, 2018 | 348 | 2018 |
Best practices for fNIRS publications MA Yücel, A Lühmann, F Scholkmann, J Gervain, I Dan, H Ayaz, D Boas, ... Neurophotonics 8 (1), 012101, 2021 | 319 | 2021 |
Wavelet minimum description length detrending for near-infrared spectroscopy KE Jang, S Tak, J Jung, J Jang, Y Jeong, JC Ye Journal of Biomedical Optics 14 (3), 034004-034004-13, 2009 | 273 | 2009 |
A data-driven sparse GLM for fMRI analysis using sparse dictionary learning with MDL criterion K Lee, S Tak, JC Ye IEEE Transactions on Medical Imaging 30 (5), 1076-1089, 2011 | 218 | 2011 |
Projection reconstruction MR imaging using FOCUSS JC Ye, S Tak, Y Han, HW Park Magnetic Resonance in Medicine 57 (4), 764-775, 2007 | 153 | 2007 |
Quantitative analysis of hemodynamic and metabolic changes in subcortical vascular dementia using simultaneous near-infrared spectroscopy and fMRI measurements S Tak, SJ Yoon, J Jang, K Yoo, Y Jeong, JC Ye Neuroimage 55 (1), 176-184, 2011 | 126 | 2011 |
Sensor space group analysis for fNIRS data S Tak, M Uga, G Flandin, I Dan, WD Penny Journal of Neuroscience Methods 264, 103-112, 2016 | 97 | 2016 |
Quantification of CMRO2 without hypercapnia using simultaneous near-infrared spectroscopy and fMRI measurements S Tak, J Jang, K Lee, JC Ye Physics in Medicine & Biology 55 (11), 3249, 2010 | 69 | 2010 |
Associations of resting-state fMRI functional connectivity with flow-BOLD coupling and regional vasculature S Tak, JR Polimeni, DJJ Wang, L Yan, JJ Chen Brain connectivity 5 (3), 137-146, 2015 | 60 | 2015 |
Sparse SPM: Group Sparse-dictionary learning in SPM framework for resting-state functional connectivity MRI analysis YB Lee, J Lee, S Tak, K Lee, DL Na, SW Seo, Y Jeong, JC Ye, ... NeuroImage 125, 1032-1045, 2016 | 58 | 2016 |
Dynamic causal modelling for functional near-infrared spectroscopy S Tak, AM Kempny, KJ Friston, AP Leff, WD Penny NeuroImage 111, 338-349, 2015 | 58 | 2015 |
Dynamic and static contributions of the cerebrovasculature to the resting-state BOLD signal S Tak, DJJ Wang, JR Polimeni, L Yan, JJ Chen Neuroimage 84, 672-680, 2014 | 55 | 2014 |
Lipschitz-Killing curvature based expected Euler characteristics for p-value correction in fNIRS H Li, S Tak, JC Ye Journal of neuroscience methods 204 (1), 61-67, 2012 | 51 | 2012 |
Dynamic causal modelling on infant fNIRS data: A validation study on a simultaneously recorded fNIRS-fMRI dataset C Bulgarelli, A Blasi, S Arridge, S Powell, CCJM de Klerk, V Southgate, ... NeuroImage 175, 413-424, 2018 | 45 | 2018 |
Effective connectivity during working memory and resting states: A DCM study K Jung, KJ Friston, C Pae, HH Choi, S Tak, YK Choi, B Park, CA Park, ... NeuroImage 169, 485-495, 2018 | 39 | 2018 |
A high‐throughput biomimetic bone‐on‐a‐chip platform with artificial intelligence‐assisted image analysis for osteoporosis drug testing K Paek, S Kim, S Tak, MK Kim, J Park, S Chung, TH Park, JA Kim Bioengineering & Translational Medicine, e10313, 2022 | 31 | 2022 |
A validation of dynamic causal modelling for 7T fMRI S Tak, J Noh, C Cheong, P Zeidman, A Razi, WD Penny, KJ Friston Journal of neuroscience methods 305, 36-45, 2018 | 19 | 2018 |