关注
Mirco Mutti
Mirco Mutti
在 technion.ac.il 的电子邮件经过验证 - 首页
标题
引用次数
引用次数
年份
Task-Agnostic Exploration via Policy Gradient of a Non-Parametric State Entropy Estimate
M Mutti, L Pratissoli, M Restelli
AAAI 2021, 2021
60*2021
Configurable Markov Decision Processes
AM Metelli, M Mutti, M Restelli
ICML 2018, 2018
472018
An Intrinsically-Motivated Approach for Learning Highly Exploring and Fast Mixing Policies
M Mutti, M Restelli
AAAI 2020, 2019
242019
Unsupervised Reinforcement Learning in Multiple Environments
M Mutti, M Mancassola, M Restelli
AAAI 2022, 2022
232022
The Importance of Non-Markovianity in Maximum State Entropy Exploration
M Mutti, R De Santi, M Restelli
ICML 2022, 2022
212022
Challenging Common Assumptions in Convex Reinforcement Learning
M Mutti, R De Santi, P De Bartolomeis, M Restelli
NeurIPS 2022, 2022
172022
Provably Efficient Causal Model-Based Reinforcement Learning for Systematic Generalization
M Mutti, R De Santi, E Rossi, JF Calderon, M Bronstein, M Restelli
AAAI 2023, 2022
14*2022
Convex Reinforcement Learning in Finite Trials
M Mutti, R De Santi, P De Bartolomeis, M Restelli
JMLR 24 (250), 1-42, 2023
102023
Persuading Farsighted Receivers in MDPs: the Power of Honesty
M Bernasconi, M Castiglioni, A Marchesi, M Mutti
NeurIPS 2023, 2023
42023
Reward-Free Policy Space Compression for Reinforcement Learning
M Mutti, S Del Col, M Restelli
AISTATS 2022, 2022
42022
Unsupervised Reinforcement Learning via State Entropy Maximization
M Mutti
PhD Thesis, Università di Bologna, 2023
32023
A Tale of Sampling and Estimation in Discounted Reinforcement Learning
AM Metelli, M Mutti, M Restelli
AISTATS 2023, 2023
22023
How to Explore with Belief: State Entropy Maximization in POMDPs
R Zamboni, D Cirino, M Restelli, M Mutti
ICML 2024, 2024
12024
Offline Inverse RL: New Solution Concepts and Provably Efficient Algorithms
F Lazzati, M Mutti, AM Metelli
ICML 2024, 2024
12024
A Framework for Partially Observed Reward-States in RLHF
C Kausik, M Mutti, A Pacchiano, A Tewari
arXiv preprint arXiv:2402.03282, 2024
12024
Non-Markovian Policies for Unsupervised Reinforcement Learning in Multiple Environments
P Maldini, M Mutti, R De Santi, M Restelli
First Workshop on Pre-training: Perspectives, Pitfalls, and Paths Forward at …, 2022
12022
The Limits of Pure Exploration in POMDPs: When the Observation Entropy is Enough
R Zamboni, D Cirino, M Restelli, M Mutti
arXiv preprint arXiv:2406.12795, 2024
2024
How to Scale Inverse RL to Large State Spaces? A Provably Efficient Approach
F Lazzati, M Mutti, AM Metelli
arXiv preprint arXiv:2406.03812, 2024
2024
Test-Time Regret Minimization in Meta Reinforcement Learning
M Mutti, A Tamar
ICML 2024, 2024
2024
Geometric Active Exploration in Markov Decision Processes: the Benefit of Abstraction
R De Santi, FA Joseph, N Liniger, M Mutti, A Krause
ICML 2024, 2024
2024
系统目前无法执行此操作,请稍后再试。
文章 1–20